Expression of Presynaptic Calcium Channels in Xenopus Oocytes

  • Joy A. Umbach
  • Cameron B. Gundersen


The release of neurotransmitter from nerve terminals is triggered by the influx of calcium ions through voltage-activated channels1–3. In excitable tissues there appear to be a number of different types of Ca channels, based on physiological parameters (single channel conductance, ion selectivity, voltage-dependent activation and inactivation properties) and sensitivity to pharmacological agents (especially dihydropyridines, w-conotoxin (wCgTx) and Cd ions). The type of Ca channel underlying synaptic transmission has not been established, although recent studies of mammalian neurons suggest that N-type channels are involved4, 22.


Xenopus Oocyte Electric Organ Control Oocyte Tetraethylammonium Bromide Inactivation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Katz and R. Miledi, A study of synaptic transmission in the absence of nerve impulses, J. Phvsiol. (Lond.) 192:407 (1967).Google Scholar
  2. 2.
    B. Katz and R. Miledi, Tetrodotoxin-resistant electrical activity in presynaptic terminals, J. Phvsiol. (Lond.) 203:459 (1969).Google Scholar
  3. 3.
    B. Katz, “The Release of Neural Transmitter Substances”, Charles C. Thomas, Springfield, II., (1969).Google Scholar
  4. 4.
    I. J. Reynolds, J. A. Wagner, S. H. Snyder, S. A. Thayer, B. M. Olivera and R. J. Miller, Brain voltage-sensitive calcium channel subtypes differentiated by w-conotoxin fraction GVIA, Proc. Natl. Acad. Sci. USA. 83:8804 (1986).CrossRefGoogle Scholar
  5. 5.
    R. Llinas, I. Z. Steinberg and K. Walton, Presynaptic calcium current in squid giant synapse, Biophvs. J. 33:289 (1981).CrossRefGoogle Scholar
  6. 6.
    M. P. Charlton, S. J. Smith and R. S. Zucker, Role of calcium ions and channels in synaptic facilitation and depression of the squid giant synapse, J. Phvsiol. (Lond.) 323:173 (1982).Google Scholar
  7. 7.
    G. J. Augustine, M. P. Charlton and S. J. Smith, Calcium entry into voltage-clamped presynaptic terminals of squid, J. Physiol. (Lond.) 367:143 (1985).Google Scholar
  8. 8.
    C. B. Gundersen, B. Katz and R. Miledi, The antagonism between botulinum toxin and calcium in motor nerve terminals, Proc. R Soc. (Lond.) B. 216:369 (1982).CrossRefGoogle Scholar
  9. 9.
    J. L. Brigant and A. Mallart, Presynaptic currents in mouse motor nerve endings, J. Physiol. (Lond.) 333:619 (1982).Google Scholar
  10. 10.
    B. M. Salzberg, A. L. Obaid, D. M. Senseman and H. Gainer, Optical recording of action potentials from vertebrate nerve terminals using Potentiometric probes provides evidence for sodium and calcium components, Nature 306:36 (1983)CrossRefGoogle Scholar
  11. 11.
    M. T. Nelson, R. J. French and B. K. Krueger, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers, Nature 308:77 (1984).CrossRefGoogle Scholar
  12. 12.
    J. B. Gurdon, C. D. Lane, H. R. Woodland and G. Marbaix, Use of frog eggs and oocytes for the study of mRNA and its translation in living cells, Nature 233:177 (1971).CrossRefGoogle Scholar
  13. 13.
    E. A. Barnard, R. Miledi, and K. Sumikawa, Translation of exogenous mRNA encoding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes, Proc. R. Soc. (Lond.) B 215:241 (1982).CrossRefGoogle Scholar
  14. 14.
    K. Sumikawa, M. Houghton, J. Emtage, B. Richards and E. Barnard, Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes, Nature 292:862 (1981).CrossRefGoogle Scholar
  15. 15.
    B. Sakmann, C. Methfessel, M. Mishina, T. Takahashi, T. Takai, Kursaki, M., Fukuda, K. and Numa, S, Role of acetylcholine receptor subunits in channel gating, Nature 318:538 (1985).CrossRefGoogle Scholar
  16. 16.
    J. A. Umbach and C. B. Gundersen, Expression of an w-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe, Proc. Natl. Acad. Sci. USA (in press) (1987).Google Scholar
  17. 17.
    C. B. Gundersen, R. Miledi and I. Parker, Slowly inactivating potassium channels induced in Xenopus oocytes by messenger ribonucleic acid from Torpedo brain, J. Physiol. (Lond.) 353:231 (1984).Google Scholar
  18. 18.
    C. B. Gundersen, D. J. Jenden and R. Miledi, Choline acetyltransferase and acetylcholine in Xenopus oocytes injected with mRNA from the electric lobe of Torpedo, Proc. Natl. Acad. Sci. USA 82:608 (1985).CrossRefGoogle Scholar
  19. 19.
    N. Dascal, T. P. Snutch, H. Lubbert, N. Davidson and H. A. Lester, Expression and modulation of voltage gated-calcium channels after RNA injection in Xenopus oocytes, Science 231:1147 (1986).CrossRefGoogle Scholar
  20. 20.
    L. M. Kerr and D. Yoshikami, A venom peptide with a novel presynaptic blocking action, Nature 308:282 (1984).CrossRefGoogle Scholar
  21. 21.
    R. E. Yeager, O. Yoshikami, J. Rivier, L. J. Cruz and G. P. Miljanich, Transmitter Release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist, omega Conus toxin, J. Neurosci. (in press) (1987).Google Scholar
  22. 22.
    E. W. McCleskey, A. P. Fox, D. Feldman and R. W. Tsien, Different types of calcium channels, J. Exp. Biol. 124:177 (1986).Google Scholar
  23. 23.
    J. A. Umbach, C. B. Gundersen and P. F. Baker, Giant synaptosomes, Nature 311:474 (1984).CrossRefGoogle Scholar
  24. 24.
    S.A. de Reimer, R. Martin, R. Rahamimoff, B. Sakmann and H. Stadler, Use of fused synaptosomes or synaptic vesicles to study ion channels involved in neurotransmission, in:this volume.Google Scholar
  25. 25.
    W. Hanke, C. Methfessel, U. Wilmsen and G. C. Boheim, Ion channel reconstitution into lipid bilayer membranes on glass patch pipettes, Bioelectrochem. Bioenerget. 12:329 (1984).CrossRefGoogle Scholar
  26. 26.
    J. P. Leonard, J. Nargeot, T. P. Snutch, N. Davidson and H. Lester, Ca channels induced in Xenopus oocytes by rat brain mRNA, J. Neurosci. 7:875 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joy A. Umbach
    • 1
  • Cameron B. Gundersen
    • 1
  1. 1.Department of Pharmacology and Jerry Lewis Neuromuscular Research CenterUCLA School of MedicineLos AngelesUSA

Personalised recommendations