Local Dynamics, Correlation, and Phase Transitions N-Body Versus Nonlinear Quantum Optics

  • R. G. Brown
  • M. Ciftan


A microscopic theory of the quantum optics of N two level atoms interacting with a resonant radiation field is applied to the problems of superradiance, photon echoes and absorptive bistability. This linear theory correctly describes these phenomena which were previously explained in terms of disparate, nonlinear theories and also predicts new ones that mean field theories are inherently incapable of treating. A new, stable pseudospin locked phase that could lead to ultrafast optical switches follows from a model hypothesis. This microscopic approach is possible because of a fundamental ansatz we make which has its origins in the quantum theory of measurement.


Order Phase Transition Cavity Field Reaction Field Hysteresis Cycle Photon Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. G. Brown and M. Ciftan, submitted to Phys. Rev. (1987).Google Scholar
  2. [2]
    L. A. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, John Wiley and Sons, New York, 1975.Google Scholar
  3. [3]
    G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches, Springer-Verlag, New York, 1974.Google Scholar
  4. [4]
    R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford, 1983.Google Scholar
  5. [5]
    A. Corney, Atomic and Laser Spectroscopy, Clarendon Press, Oxford, 1977.Google Scholar
  6. [6]
    P. L. Knight and L. A. Allen, Concepts of Quantum Optics, Pergamon Press, New York, 1983.Google Scholar
  7. [7]
    W. H. Louisell, Radiation and Noise in Quantum Electronics, McGraw-Hill Book Co., New York, 1964.Google Scholar
  8. [8]
    Coherence and Quantum Optics, ed. L. Mandel and E. Wolf, Plenum Press, New York, 1973.;Google Scholar
  9. Coherence and Quantum Optics IV, ed. L. Mandel and E. Wolf, Plenum Press, New York, 1977;Google Scholar
  10. Coherence and Quantum Optics V, L. Mandel and E. Wolf, Plenum Press, New York, 1983.Google Scholar
  11. [9]
    Quantum Electrodynamics and Quantum Optics, ed. A. O. Barut, Plenum Press, New York, 1983.Google Scholar
  12. [10]
    Coherent Nonlinear Optics, ed. M. S. Feld and V. S. Letokhov, Springer Verlag, New York, 1980.Google Scholar
  13. [11]
    Optical Bistability, ed. C. Bowden, M. Ciftan, and H. Robl, Plenum Press, New York, 1980.Google Scholar
  14. [12]
    Optical Bistability III, ed. H. M. Gibbs, P. Mandel, N. Peyghambarian and S. D. Smith, Springer Verlag, New York, 1986.Google Scholar
  15. [13]
    H. M. Gibbs, Optical Bistability: Controlling Light with Light. Academic Press, New York, 1985.Google Scholar
  16. [14]
    R. H. Dicke, Phys. Rev. 93, 99 (1954).CrossRefGoogle Scholar
  17. [14]
    J. M. Radcliffe, J. Phys. A 4, 313 (1971).CrossRefGoogle Scholar
  18. [16]
    F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). Atomic coherent states are also called Bloch states.CrossRefGoogle Scholar
  19. [17]
    J. H. Eberly, in Coherence and Quantum Optics, ([8a]). p. 635.Google Scholar
  20. [18]
    K. G. Whitney, ibid (CQO,[8a]), p.767.Google Scholar
  21. [19]
    R. Bonifacio and L. A. Lugiato, a) Opt. Comm. 19, 172 (1976);CrossRefGoogle Scholar
  22. b) Phys. Rev. A 18, 1129 (1978). These authors, in particular, have written many papers on bistability in a mean field optical theory.Google Scholar
  23. [20]
    R. H. Lehmberg, a) Phys. Rev. A 2, 883 (1970);CrossRefGoogle Scholar
  24. b) Phys. Rev. A 2, 889 (1970).Google Scholar
  25. [21]
    N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).CrossRefGoogle Scholar
  26. [22]
    R. Bonifacio, P. Schwendimann and F. Haake, a) Phys. Rev. A 4, 302 (1971);CrossRefGoogle Scholar
  27. b) Phys. Rev. A 4, 854 (1971).Google Scholar
  28. [23]
    C. R. Stroud, J. H. Eberly, W. L. Lama, and L. Mandel, Phys. Rev. A 5, 1094 (1972).CrossRefGoogle Scholar
  29. [24]
    R. Bonifacio and L. A. Lugiato, a) Phys. Rev. A 11, 1507 (1975);CrossRefGoogle Scholar
  30. b) Phys. Rev. A 12, 587 (1975).Google Scholar
  31. [25]
    J. C. MacGillivray and M. S. Feld, a) Phys. Rev. A 14, 1169 (1976);Google Scholar
  32. b) M. S. Feld and J. C. MacGillivray, in Coherent Nonlinear Optics, ed. M. S. Feld and V. S. Letokhov, Springer-Verlag, New York, pp. 7 – 57 (1980).Google Scholar
  33. [26]
    R. Glauber and F. Haake, Phys. Lett. 68A, 29 (1978).Google Scholar
  34. [27]
    F. Haake, H. King, G. Schröder, J. Haus, and R. Glauber, Phys. Rev. A 20, 2047 (1979).CrossRefGoogle Scholar
  35. [28]
    N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, Phys. Rev. Lett. 30, 309 (1973).CrossRefGoogle Scholar
  36. [29]
    M. Gross, C. Fabre, P. Pillet and S. Haroche, Phys. Rev. Lett. 36, 1035 (1976).CrossRefGoogle Scholar
  37. [30]
    A. Flusberg, T. Mossberg and S. R. Hartmann, Phys. Lett. 58A, 373 (1976).Google Scholar
  38. [31]
    H. M. Gibbs, Q. H. F. Vehren and H. M. J. Hikspoors, Phys. Rev. Lett. 39, 547 (1977).CrossRefGoogle Scholar
  39. [32]
    E. L. Hahn, Phys. Rev. 80, 580 (1950).CrossRefGoogle Scholar
  40. [33]
    N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev. Lett. 13, 567 (1964).CrossRefGoogle Scholar
  41. [34]
    H. Seidel, "Bistable optical circuit using bistable absorber within a resonating cavity", U. S. Patent 3,610,731 filed May 19, 1969 granted October 5, 1971.Google Scholar
  42. [35]
    A. Szöke, V. Daneu, J. Goldhar, and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).CrossRefGoogle Scholar
  43. [36]
    S. L. McCall, Phys. Rev. A 9, 1515 (1974).CrossRefGoogle Scholar
  44. [37]
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).CrossRefGoogle Scholar
  45. [38]
    A. G. Redfield, Phys. Rev. 98, 1787 (1955).CrossRefGoogle Scholar
  46. [39]
    E. T. Sleva, I. M. Xavier, and A. H. Zewail, J. Opt. Soc. Am. B 3, 483 (1986).CrossRefGoogle Scholar
  47. [40]
    J. A. Wheeler and R. P. Feynman, Rev. of Mod. Phys. 17, 157 (1945).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. G. Brown
    • 1
  • M. Ciftan
    • 1
  1. 1.Physics DepartmentDuke UniversityDurhamUSA

Personalised recommendations