Skip to main content

Semiclassical Molecular Dynamics of Wavepackets in One-Dimensional Phase Space

  • Chapter
Condensed Matter Theories
  • 144 Accesses

Abstract

A semiclassical method for solving the quantum Liouville equation in one-dimensional phase-space is described. The development is based on constructing a Gaussian density matrix and is applicable to systems in pure and in mixed states having nonlinear interaction potentials. The density matrix is constructed using a set of dynamic variables whose expectation values are considered to be relevant for the dynamics. The self-consistent equations of motion are then derived for these expectations from the quantum Liouville equation using a projection scheme. The solution of these self-consistent equations provides the time evolution of the density matrix. The present method can yield, in principle, exact values for these expectations for all times. A model calculation is carried out to describe the vibrational motion of an arbitrary diatomic molecule on an anharmonic potential surface. However, the potentiality of this method lies in describing the time evolution of systems in mixed states and hence in describing the dynamics of molecular processes in condensed phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Various applications using classical methods are reviewed by H. L. Friedman, "A Course in Statistical Mechanics," Prentice-Hall, Englewood Cliffs, New Jersey (1985),

    Google Scholar 

  2. J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids," Academic Press, New York (1976).

    Google Scholar 

  3. R. M. Stratt and W. H. Miller, J. Chem. Phys.67: 5894 (1977);

    Article  CAS  Google Scholar 

  4. J. G. Powles and G. Rikayzen, Mol. Phys.38:1875 (1979).

    Article  CAS  Google Scholar 

  5. Several methods are reviewed by D. M. Ceperley and M. H. Kalos in: "Monte Carlo Methods in Statistical Physics," K. Binder, ed., Springer-Verlag, New York (1984), Chapt. 4.

    Google Scholar 

  6. J. Arponen, Ann. Phys. (NY)151: 311 (1983),

    Article  CAS  Google Scholar 

  7. J. Arponen, R. F. Bishop and E. Pajanne, preprint, 1987.

    Google Scholar 

  8. Y. Takahasi and H. Umezawa, in: "Collective Phenomena," Vol. 2, Gordon and Breach, London (1975), pp. 55 – 80;

    Google Scholar 

  9. H. Matsumoto, Y. Nakano, H. Umezawa, F. Mancini and M. Marinaro, Prog. Theor. Phys. 70:599 (83);

    Google Scholar 

  10. I. Ojima, Ann. Phys. (NY)137: 1 (1981);

    Article  CAS  Google Scholar 

  11. H. Matsumoto, I. Ojima and H. Umezawa, Ann. Phys. (NY)152: 348 (1984);

    Article  Google Scholar 

  12. H. Umezawa, H. Matsumoto and M. Tachiki, "Thermo Field Dynamics and Condensed States," North-Holland, Amsterdam (1982).

    Google Scholar 

  13. A. Rahman, Phys. Rev. A136: 405 (1964);

    CAS  Google Scholar 

  14. A. Rahman and F. H. Stillinger, Phys. Rev. A55: 3336 (1971);

    Article  CAS  Google Scholar 

  15. L. Verlet, Phys. Rev. A159: 98 (1967);

    CAS  Google Scholar 

  16. 165:201 (1968).

    Google Scholar 

  17. P. A. Egelstaff, "An Introduction to the Liquid State," Academic Press, New York (1967), Chapt. 9

    Google Scholar 

  18. J. T. Hynes, Ph.D Thesis, Princeton, 1969. Quantum correction to classically-simulated I. R. and Raman Spectra are discussed by P. H. Bernes, S. R. White and K. R. Wilson, J. Chem. Phys. 74:4872 (1981);

    Google Scholar 

  19. 75:515 (1981).

    Google Scholar 

  20. E. J. Heller, J. Chem. Phys. 62:1544 (1975);

    Article  CAS  Google Scholar 

  21. 64:63 (1976).

    Google Scholar 

  22. R. P. Feynman and A. R. Hibbs, "Quantum Mechanics and Path Integrals," McGraw-Hill, New York (1965).

    Google Scholar 

  23. N. Corbin and K. Singer, Mol. Phys.46: 671 (1982);

    Article  CAS  Google Scholar 

  24. K. Singer and W. Smith, Mol. Phys.57: 761 (1986);

    Article  CAS  Google Scholar 

  25. R. B. Gerber, V. Buch and M. A. Ratner, J. Chem. Phys.77: 3022 (1982);

    Article  CAS  Google Scholar 

  26. R. D. Coalson and M. Karplus, Chem. Phys. Lett. 90:301 (1982);

    Article  CAS  Google Scholar 

  27. J. Chem. Phys. 79: 6150 (1983);

    Google Scholar 

  28. D. Thirumalai and B. J. Berne, J. Chem. Phys.79: 5029 (1983);

    Article  CAS  Google Scholar 

  29. D. Thirumalai, E. J. Bruskin and B. J. Berne, ibid. 79: 5063 (1983).

    CAS  Google Scholar 

  30. E. T. Jaynes, Phys. Rev.106:620 (1957);

    Article  Google Scholar 

  31. 108: 171 (1957).

    Google Scholar 

  32. For a detailed review, see “The Maximum Entropy Formalism,” R. D. Levine and M. Tribus, eds., MIT Press, Cambridge (1978).

    Google Scholar 

  33. B. Robertson, in: "The Maximum Entropy Formalism," R. D. Levine and M. Tribus, eds., MIT Press, Cambridge, (1978).

    Google Scholar 

  34. H. Mori, J. Phys. Soc. Jpn.11:1029 (1956);

    Article  Google Scholar 

  35. Phys. Rev.112: 1829 (1958);

    Google Scholar 

  36. 115:298 (1959);

    Google Scholar 

  37. H. Mori, I. Oppenheim and J. Ross, in "Studies in Statistical Mechancics," J. deBoer and G. E. Uhlenbeck, eds., Vol. I, North-Holland, Amsterdam (1962), p. 271 ff.

    Google Scholar 

  38. J. A. Mclennan, Phys. Rev. 4:1319 (1961);

    Google Scholar 

  39. Adv. Chem. Phys. 4:1319 (1963).

    Google Scholar 

  40. B. Robertson, Phys. Rev. 144:151 (1966);

    Article  CAS  Google Scholar 

  41. 160: 175 (1967);

    Google Scholar 

  42. C. R. Willis and R. H. Picard, Phys. Rev. A9: 1343 (1974),

    Article  CAS  Google Scholar 

  43. S. Mukamel, Phys. Rep. 93:1 (1982),

    Article  CAS  Google Scholar 

  44. R. P. Feynman, "Statistical Mechanics," Benjamin, New York (1972).

    Google Scholar 

  45. A. Haque and T. F. George, Mol. Phys., submitted.

    Google Scholar 

  46. See, for example, A. Messiah, "Quantum Mechanics," Vol. I, North-Holland, Amsterdam (1961), Chapt. 6.

    Google Scholar 

  47. L. Onsager, Phys. Rev. 37:405 (1931);

    Article  CAS  Google Scholar 

  48. 38: 2265 (1931);

    Google Scholar 

  49. L. Onsager and S. Machlup, Phys. Rev. 91:1505 (1953);

    Article  CAS  Google Scholar 

  50. R. Zwanzig, Suppl. Prog. Theor. Phys. 64:74 (1978).

    Article  Google Scholar 

  51. E. P. Wigner, Phys. Rev.40: 749 (1932);

    Article  CAS  Google Scholar 

  52. M. Hillery, R. F. O’Connel, M. O. Scully and E. P. Wigner, Phys. Rep.106: 121 (1984).

    Article  Google Scholar 

  53. I. Prigogine, "From Being to Becoming," Freeman, New York (1980).

    Google Scholar 

  54. G. Herzberg, "Spectra of Diatomic Molecules," van Nostrand Reinhold, New York (1950).

    Google Scholar 

  55. A. C. Hindmarsh, "Gear: Ordinary Differential Equation System Solver," Lawrence Livermore Laboratory, Report UCID-30001, Revision 3 (December, 1974);

    Google Scholar 

  56. C. W. Gear, "Numerical Initial Value Problems in Ordinary Differential Equations," Prentice-Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  57. S. Sawada, R. Heather, B. Jackson and H. Metiu, J. Chem. Phys.83: 3009 (1985);

    Article  CAS  Google Scholar 

  58. R. T. Skodje and D. G. Truhlar, J. Chem. Phys.80: 3123 (1984).

    Article  CAS  Google Scholar 

  59. E. Pollack and D. M. Ceperley, Phys. Rev. B30: 2555 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Haque, A., George, T.F. (1988). Semiclassical Molecular Dynamics of Wavepackets in One-Dimensional Phase Space. In: Arponen, J.S., Bishop, R.F., Manninen, M. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0971-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0971-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8271-6

  • Online ISBN: 978-1-4613-0971-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics