Quantum Dynamics of Short Pulse Vibrational Overtone Spectroscopy and Photochemistry

  • John S. Hutchinson
  • Kenneth T. Marshall

Abstract

Highly vibrationally excited states of polyatomic molecules corresponding to excitations of overtones of “local bond modes” have been studied throughout this decade as a means of revealing the intramolecular vibrational dynamics important to chemical reactivity.1–3 Under conditions of low temperature and low pressure with highly sensitive photoacoustic detection and intense lasers, spectroscopists observe progressions of vibrational bands at energies up to 25,000 cm-1 in the ground electronic state, accessible via direct, one photon transitions from the ground vibrational state, which very closely fit a Morse oscillator energy relation.4–9 These data are naturally interpreted as arising from overtone excitations of light atom/heavy atom bonds (typically HC, HN, HO, or HSi) behaving as “local” diatomic oscillators in polyatomics.2 This implies that one can exploit these transitions to “deposit” several quanta of vibrational energy into a single bond in a molecule. Such a prospect is clearly extremely enticing to the laser photo-chemist, for whom localized excitations hold out the possibility of laser control of chemical reactivity in the form of “mode-selective chemistry.”1,10 As we shall discuss in some detail, the experiments performed to date do not prepare truly localized excitations. Rather more correctly, the observed high energy vibrational bands derive their intensity from a pure overtone state, “a doorway state,” of a local bond mode.11

Keywords

Hydrogen Peroxide Benzene Petroleum Alkane Alkyne 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Crim, Ann. Rev. Phys. Chem. 35:657 (1984).ADSCrossRefGoogle Scholar
  2. 2a.
    B. R. Henry, Acc. Chem. Res. 10:207 (1977).CrossRefGoogle Scholar
  3. 2b.
    L. Halonen and M. S. Child, Adv. Chem. Phys. 57:1 (1984).CrossRefGoogle Scholar
  4. 3.
    J. S. Hutchinson, Local Modes Overtones and Mode Selectivity, in “Lasers, Molecules, and Methods,” J. O. Hirschfelder, R. E. Wyatt, and R. D. Coalson, ed., Adv. Chem. Phys., in press.Google Scholar
  5. 4a.
    R. G. Bray and M. J. Berry, J. Chem. Phys. 71:4909 (1979).ADSCrossRefGoogle Scholar
  6. 4b.
    K. V. Reddy, D. F. Heller, and M. J. Berry, J. Chem. Phys. 76:2814 (1982).ADSCrossRefGoogle Scholar
  7. 5a.
    L. J. Butler, T. M. Ticich, M. D. Likar, and F. F. Crim, J. Chem. Phys. 85:2331 (1986).ADSCrossRefGoogle Scholar
  8. 5b.
    E. S. McGinley and F. F. Crim, J. Chem. Phys. 85:5741 (1986).ADSCrossRefGoogle Scholar
  9. 6.
    J. W. Perry and A. H. Zewail, J. Chem. Phys. 80:5333 (1984).ADSCrossRefGoogle Scholar
  10. 7.
    G. J. Scherer, K. K. Lehmann, and W. Klemperer, J. Chem. Phys. 78:2817 (1983).ADSCrossRefGoogle Scholar
  11. 8.
    H. L. Fang, D. M. Meister, and R. L. Swofford, J. Phys. Chem. 88:410 (1984).CrossRefGoogle Scholar
  12. 9.
    J. S. Wong and C. B. Moore, J. Chem. Phys. 77:603 (1982).ADSCrossRefGoogle Scholar
  13. 10.
    V. S. Letokhov, Nature 305:103 (1983).ADSCrossRefGoogle Scholar
  14. 11.
    D. F. Heller and S. Mukamel, J. Chem. Phys. 70:463 (1979).ADSCrossRefGoogle Scholar
  15. 12a.
    E. L. Sibert, III, J. T. Hynes, and W. P. Reinhardt, Chem. Phys. Letters 92:455 (1982).ADSCrossRefGoogle Scholar
  16. 12b.
    J. Chem. Phys. 81:1115,1135 (1984)ADSCrossRefGoogle Scholar
  17. 13a.
    K. L. Bintz, D. L. Thompson, and J. W. Brady, J. Chem. Phys. 86:4411 (1987).ADSCrossRefGoogle Scholar
  18. 13b.
    J. Chem. Phys. 85:1848 (1986).ADSCrossRefGoogle Scholar
  19. 13c.
    Chem. Phys. Letters 131:398 (1986).ADSCrossRefGoogle Scholar
  20. 14.
    D.-H. Lu, W. L. Hase, and R. J. Wolf, J. Chem. Phys. 85:4422 (1986).ADSCrossRefGoogle Scholar
  21. 15.
    J. M. Jasinski, Chem. Phys. Letters 123:121 (1986).ADSCrossRefGoogle Scholar
  22. 16a.
    M. J. Berry, Proceedings of the Robert A. Welch Foundation Conference. XXVIII:133 (1984).Google Scholar
  23. 16b.
    R. R. Hall, PhD. Dissertation, Rice University (1984).Google Scholar
  24. 17.
    H. L. Fang, R. L. Swofford, and D. A. C. Compton, Chem. Phys. Letters 108:539 (1984).ADSCrossRefGoogle Scholar
  25. 18a.
    H. L. Fang and R. L. Swofford, Chem. Phys. Letters 105:5 (1984).ADSCrossRefGoogle Scholar
  26. 18b.
    H. L. Fang, D. M. Meister, and R. L. Swofford, J. Phys. Chem. 88:405 (1984).CrossRefGoogle Scholar
  27. 18c.
    J. M. Jasinski, Chem. Phys. Letters 109:462 (1984).ADSCrossRefGoogle Scholar
  28. 19.
    J. W. Perry and A. H. Zewail, J. Phys. Chem. 85:933 (1981).CrossRefGoogle Scholar
  29. 20.
    J. S. Hutchinson, J. T. Hynes, and W. P. Reinhardt, J. Phys. Chem. 90:3528 (1986).CrossRefGoogle Scholar
  30. 21.
    T. A. Holme and J. S. Hutchinson, J. Chem. Phys. 83:2860 (1985).ADSCrossRefGoogle Scholar
  31. 22a.
    J. S. Hutchinson, W. P. Reinhardt, and J. T. Hynes, J. Chem. Phys. 79:4247 (1983).ADSCrossRefGoogle Scholar
  32. 22b.
    Chem. Phys. Letters 108:353 (1984).ADSCrossRefGoogle Scholar
  33. 23.
    J. S. Hutchinson, J. Chem. Phys. 82:22 (1985).ADSCrossRefGoogle Scholar
  34. 24.
    K. T. Marshall and J. S. Hutchinson, J. Phys. Chem. 91:3219 (1987).CrossRefGoogle Scholar
  35. 25.
    B. G. Sumpter and D. L. Thompson, J. Chem. Phys. 86:2805 (1987).ADSCrossRefGoogle Scholar
  36. 26a.
    K. V. Reddy and M. J. Berry, Chem. Phys. Letters 66:223 (1979).ADSCrossRefGoogle Scholar
  37. 26b.
    D. W. Chandler, W. E. Farneth, and R. N. Zare, J. Chem. Phys. 77:4447 (1982).ADSCrossRefGoogle Scholar
  38. 26c.
    J. M. Jasinski, J. K. Frisoli, and C. B. Moore, J. Chem. Phys. 79:1312 (1983); and references within these.ADSCrossRefGoogle Scholar
  39. 27a.
    T. Uzer, J. T. Hynes, and W. P. Reinhardt, Chem. Phys. Letters 117:600 (1985).ADSCrossRefGoogle Scholar
  40. 27b.
    J. Chem. Phys. 85:5791 (1986).ADSCrossRefGoogle Scholar
  41. 28a.
    N. F. Scherer and A. H. Zewail, J. Chem. Phys. 87:97 (1987).ADSCrossRefGoogle Scholar
  42. 28b.
    N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84:1932 (1986).ADSCrossRefGoogle Scholar
  43. 28c.
    L. R. Khundar, J. L. Knee, and A. H. Zewail, J. Chem. Phys. 87:77, 115 (1987).Google Scholar
  44. 29.
    T. A. Holme and J. S. Hutchinson, J. Chem. Phys. 84:5455 (1986).ADSCrossRefGoogle Scholar
  45. 30.
    J. S. Hutchinson, J. Chem. Phys. 85:7087 (1986).ADSCrossRefGoogle Scholar
  46. 31.
    J. S. Hutchinson and K. T. Marshall, Local Mode Overtones: Ultrashort Pulse Excitation, Intramolecular Relaxation, and Unimolecular Reactions, “Faraday Symposium on Molecular Vibrations”, Faraday Disc. Chem. Soc., in press.Google Scholar
  47. 32.
    K. M. Christoffel and J. M. Bowman, J. Chem. Phys. 85:2159 (1981).CrossRefGoogle Scholar
  48. 33a.
    S. K. Gray, Chem. Phys. 75:67 (1983).MathSciNetADSCrossRefGoogle Scholar
  49. 33b.
  50. 34.
    E. S. Medvedev, J. Mol. Spectrosc. 114:1 (1985).ADSCrossRefGoogle Scholar
  51. 35.
    G. A. Voth and R. A. Marcus, J. Phys. Chem. 89:2208 (1985).CrossRefGoogle Scholar
  52. 36.
    P. S. Dardi and S. K. Gray, J. Chem. Phys. 80:4738 (1984).ADSCrossRefGoogle Scholar
  53. 37.
    W. P. Reinhardt, Ann. Rev. Phys. Chem. 33:223 (1982), and references therein.ADSCrossRefGoogle Scholar
  54. 38.
    R. E. Wyatt, The Recursive Residue Generation Method, in “Lasers, Molecules, and Methods,” J. O. Hirschfelder, R. E. Wyatt, and R. D. Coalson, ed., Adv. Chem. Phys., in press.Google Scholar
  55. 39a.
    C. Lanczos, J. Res. Natl. Bur. Stand. 45:255 (1950).MathSciNetGoogle Scholar
  56. 39b.
    J. K. Cullum and R. A. Willoughby, “Lanczos Algorithms for Large Symmetric Eigenvalue Computations,” Birkhäuser, Boston (1985).MATHGoogle Scholar
  57. 40a.
    P. Mukharjee and H. S. Kwok, J. Chem. Phys. 85:4912 (1986).ADSCrossRefGoogle Scholar
  58. 40b.
  59. 41.
    C. V. Shank, Science 233:1276 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • John S. Hutchinson
    • 1
  • Kenneth T. Marshall
    • 1
  1. 1.Department of Chemistry and Rice Quantum InstituteRice UniversityHoustonUSA

Personalised recommendations