Skip to main content

Discussion of Limiting Deposition Power Densities in Laser Target Materials

  • Chapter
  • 131 Accesses

Abstract

The availability of terawatt KrF* laser systems is expanding capabilities to explore new atomic processes at high intensity in the ultraviolet. By utilizing the nonlinear absorption of laser energy into a target material and the relativistic motion of electrons in the high charge state plasma produced by intensities exceeding 1019 W/cm2, it should be possible to exceed the deposition power density necessary to achieve amplification in the x-ray region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Schwarzenbach, T. S. Luk, I. A. McIntyre, U. Johann, A. McPherson, K. Boyer, and C. K. Rhodes, Subpicosecond KrF excimer-laser source, Opt. Lett. 11:499 (1986).

    Article  ADS  Google Scholar 

  2. I. A. Mclntyre, A. P. Schwarzenbach, T. S. Luk, A. McPherson, K. Boyer, and C. K. Rhodes, High power subpicosecond KrF laser system, in “SPIE 664. High Intensity Laser Processes”, SPIE, Bellingham (1986).

    Google Scholar 

  3. H. Jara, K. Boyer, U. Johann, T. S. Luk, I. A. Mclntyre, A. McPherson, and C. K. Rhodes, Dynamic Absorption Effects in KrF Amplifiers, Appl. Phys. B 42:11 (1987).

    Article  ADS  Google Scholar 

  4. A. V. Vinogradov and I. I. Sobel’man, The Problem of Laser Radiation Sources in the Far Ultraviolet and X-Ray Regions, Sov. Phvs.-JETP 36:1115 (1973).

    ADS  Google Scholar 

  5. C. K. Rhodes, Multiphoton Ionization of Atoms, Science 229:1345 (1985).

    Article  ADS  Google Scholar 

  6. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. Mclntyre, K. Boyer, and C. K. Rhodes, Studies of Multiphoton Production of Vacuum Ultraviolet Ratiation in the Rare Gases, J. Opt. Soc. Am. B4:595 (1987).

    Google Scholar 

  7. A. Szöke, Interpretation of Electron-Spectra Obtained from Muitiphoton Ionization in Strong Fields, J. Phys. B18:L427 (1985).

    Google Scholar 

  8. C. K. Rhodes, Studies of Collision-Free Nonlinear Processes in the Ultraviolet Range, in “Muitiphoton Processes”, P. Lambropoulos and S. J. Smith, editors Springer-Verlag, Berlin, (1984) p. 31.

    Google Scholar 

  9. K. Boyer and C. K. Rhodes, Atomic Inner-Shell Excitation Induced by Coherent Motion of Outer-Shell Electrons, Phys. Rev. Lett. 54:1490 (1985).

    Article  ADS  Google Scholar 

  10. A. Szöke and C. K Rhodes, Theoretical Model of Inner Shell Excitation by Outer-Shell Electrons, Phys. Rev. Lett. 56:720 (1986).

    Article  ADS  Google Scholar 

  11. K. Boyer, H. Jara, T. S. Luk, I. A. McIntyre, A. McPherson, R. Rosman, and C. K. Rhodes, Limiting Cross Sections for Muitiphoton Coupling, submitted to Revue de Physique Appliquée.

    Google Scholar 

  12. T. S. Luk, U. Johann, H. Egger, H. Pummer, and C. K. Rhodes, Collision-Free Multiple Photon Ionization of Atoms and Molecules at 193 nm, Phys. Rev. A 32:214 (1985).

    Article  ADS  Google Scholar 

  13. U. Johann, T. S. Luk, I. A. Mclntyre, A. McPherson, A. P. Schwarzenbach, K. Boyer, and C. K. Rhodes, Muitiphoton Ionization in Intense Ultraviolet Laser Fields, in “AIP Conference Proceedings No. 147, Optical Science and Engineering Series 7, Short Wavelength Coherent Radiation: Generation and Applications”, D. Attwood and J. Boker eds., AIP, New York (1986) p. 202.

    Google Scholar 

  14. E. F. Plechaty, D. E. Cullen, and R. J. Howerton, Tables and Graphs of Photon Interaction Cross Sections from 0.1 keV to 100 MeV Derived from the LLL Evatuated-Nuclear-Pata Library, UCRL-50400, V6, Rev. 3 Nov 1981.

    Book  Google Scholar 

  15. Heinrich Hora, “Physics of Laser Driven Plasma”, Wiley-Interscience, New York (1981) p.220.

    Google Scholar 

  16. Prediman Kaw and John Dawson, Relativistic Nonlinear Propagation of Beams in Cold Overdense Plasmas, Physics of Fluids 12:472 (1970).

    Article  ADS  Google Scholar 

  17. K. Boyer, H. Jara, T. S. Luk, I. A. Mclntyre, A. McPherson, R. Rosman, C. K. Rhodes, and J. C. Solem, X-Ray Amplifier Excitation in a Dynamically Self-Trapped Ultraviolet Beam, submitted to Optics Letters.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

McPherson, A. et al. (1988). Discussion of Limiting Deposition Power Densities in Laser Target Materials. In: Bandrauk, A.D. (eds) Atomic and Molecular Processes with Short Intense Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0967-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0967-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8269-3

  • Online ISBN: 978-1-4613-0967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics