Advertisement

Cerebellum and Classical Conditioning

  • C. H. Yeo
Part of the NATO ASI Series book series (NSSA, volume 148)

Abstract

Towards the end of the last century, I.P. Pavlov introduced conditioning of motor and alimentary responses as a technique for rigorously analysing the neural basis of learning. The technique for Pavlovian, or classical conditioning, is simple but powerful. A behaviouraly neutral stimulus (the conditioned stimulus — CS) is paired with another stimulus (the unconditioned stimulus — US) which reliably and unconditionally elicits a particular reflex response (the unconditioned response — UR). After a sufficient number of these stimulus pairings, the previously neutral stimulus now elicits a response (the conditioned response — CR) see (Figure 1). Procedurally, we may think of this as the simplest form of associative learning.

Keywords

Unconditional Stimulus Inferior Olive Nictitate Membrane Pontine Nucleus Nictitate Membrane Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S., 1971, A theory of cerebellar function. Math. Bioscience 10:25–61.CrossRefGoogle Scholar
  2. Andersson, G., and Hesslow, G., 1986, Evidence for an inhibitory action by cerebellar nuclear cells on the inferior olive. Neurosci. Letts. 26:S231.Google Scholar
  3. Benedetti, F., Montarolo, P.G., and Rabacchi, S., 1984, Inferior olive lesion induces long-lasting functional modification in the Purkinje cells. Exp. Brain Res. 55:368–371. Berkeley, K.J., and Hand, P.J., 1978, Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and spinal trigeminal nuclei. J. Comp. Neurol. 180:252–264. Berthier, N.E., 1984, The role of the extraocular muscles in the rabbit nictitating membrane response: a reexamination. Behav. Brain Res. 14:81–84.CrossRefGoogle Scholar
  4. Berthier, N.E., and Moore, J.W., 1980, Role of extraocular muscles in the rabbit (Oryctolagus cuniculus) nictitating membrane response. Physiol. Behav. 24:931–937.PubMedCrossRefGoogle Scholar
  5. Berthier, N.E., and Moore, J.W., 1983, The nictitating membrane response: An electrophysiological study of the abducens nerve and the accessory abducens nucleus in the rabbit. Brain Res. 253:201–210.CrossRefGoogle Scholar
  6. Berthier, N.E., and Moore, T.W., 1986, Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res. 63:341–350.PubMedCrossRefGoogle Scholar
  7. Brodal, A., 1939, Experimentalle Untersuchungen uber retrograde Zellveranderungen in der unteren Olive nach Lasionen des Kleinhirns. Z. ges Neurol. Psychiat. 166:624–704.CrossRefGoogle Scholar
  8. Brodal, A., 1940, Experimentalle Untersuchungen uber die olivo-cerebellare Lokalisation. Z. ges Neurol. Psychiat. 169:1–153.CrossRefGoogle Scholar
  9. Brogden, W.J., and Gantt, W.H., 1942, Intraneural conditioning. Cerebellar conditioned reflexes. Arch. Neurol. Psychiat. (Chicago) 48:437–455.Google Scholar
  10. Burne, R.A., Azizi, S.A., Mihailoff, G.A., and Woodward, D.J., 1981, The tectopontine projection in the rat with comments on the visual pathways to the basilar pons. J. Comp. Neurol. 202:287–307.PubMedCrossRefGoogle Scholar
  11. Cegavske, C.F., Thompson, R.F., Patterson, M.M., and Gormezano, I., 1976, Mechanisms of efferent control of the reflex nictitating membrane response in the rabbit. J. Comp. Physiol. Psychol. 90:411–423.PubMedCrossRefGoogle Scholar
  12. Clark, G.A., McCormick, D.A., Lavond, D.G., Baxter, K., Gray, W., and Thompson, R.F., 1982, Effects of electrolytic lesions of cerebellar nuclei on conditioned behavioural and hippocampal neuronal responses. Soc. Neurosci. Abs. 8:22.Google Scholar
  13. Clark, G.A., McCormick, D.A., Lavond, D.G., and Thompson, R.F., 1984, Effects of lesions of cerebellar nuclei on conditioned behavioural and hippocampal responses. Brain Res. 291:125–136.PubMedCrossRefGoogle Scholar
  14. Colin, F., Manil, J., and Desclin, J.C., 1980, The olivocerebellar system. I. Delayed and slow inhibitory effects: An overlooked salient feature of cerebellar climbing fibers. Brain Res. 187:3–27.Google Scholar
  15. Desmond, J.E., Berthier, N.E., and Moore, J.W., 1981, Brain stem elements essential for the classically conditioned nictitating membrane response of the rabbit. Soc. Neurosci. Abstr. 7:651.Google Scholar
  16. Desmond, J.E., and Moore, J.W., 1982, A brain stem region essential for the classically conditioned but not the unconditioned nictitating membrane response. Physiol. Behav. 28:1029–1033.PubMedCrossRefGoogle Scholar
  17. Desmond, J.E., Rosenfield, M.E., and Moore, J.W., 1983, An HRP study of the brainstem afferents to the accessory abducens region and dorsolateral pons in the rabbit: implications for the conditioned nictitating membrane response. Brain Res. Bull. 10:747–763.PubMedCrossRefGoogle Scholar
  18. Disterhoft, J.F., Kwan, H.H., and Lo, W.D., 1977, Nictitating membrane conditioning to tone in the immobilized albino rabbit. Brain Res. 137:127–143.PubMedCrossRefGoogle Scholar
  19. Disterhoft, J., Quinn, K.J., Weiss, C., and Shipley M.T., 1985, Accessory abducens nucleus and conditioned eye retraction/nictitating membrane extension in rabbit. J. Neurosci. 5:941–950.PubMedGoogle Scholar
  20. Enser, L.D., 1976, A study of classical nictitating membrane conditioning in neodecorticate, hemidecoticate and thalamic rabbits. Ph.D. thesis University of Iowa.Google Scholar
  21. Gellman, R., Houk, J.C., and Gibson, A.R., 1983, Somatosensory properties of the inferior olive of the cat. J. Comp. Neurol. 215:228–243.PubMedCrossRefGoogle Scholar
  22. Gilbert, P.F.C., 1974, A theory of memory that explains the function and structure of the cerebellum. Brain Res. 70:1–18.PubMedCrossRefGoogle Scholar
  23. Glickstein, M., Hardiman, M.J., and Yeo, C.H., 1983, The effects of cerebellar lesions on the conditioned nictitating membrane response of the rabbit. J. Physiol. 341:30–31P.Google Scholar
  24. Gormezano, I., Schneiderman, N., Deaux, E., and Fuentes, I., 1962, Nictitating membrane: classical conditioning and extinction in the albino rabbit. Science 138:93–106.CrossRefGoogle Scholar
  25. Gormezano, I., and Moore, J.W., 1969, Classical conditioning. In: Learning: Processes, M.H. Marx, ed., Macmillan, New York.Google Scholar
  26. Gormezano, I., Kehoe, E.J., and Marshall, B.S., 1983, Twenty years of classical conditioning research with the rabbit. In: Progress in psychobiology and physiological psychology, vol. 10, J. Sprague and A.N. Epstein, eds, Academic Press, New York.Google Scholar
  27. Gray, T.S., McMaster, S.E., Harvey, J.A., and Gormezano, I., 1981, Localisation of retractor bulbi motoneurons in the rabbit. Brain. Res. 226:93–106.PubMedCrossRefGoogle Scholar
  28. Harrison, T.A., and Cegavske, C.F., 1981, Role of the levator palpebrae superioris (LPS) muscle in effecting nictitating membrane response movement in the rabbit. Brain Res. 226:93–106.CrossRefGoogle Scholar
  29. Harvey, J.A., Land, T., and McMaster, S.E., 1984, Anatomical study of the rabbit’s corneal-VIth nerve reflex: Connections between cornea, trigeminal sensory complex, and the abducens and accessory abducens nuclei. Brain Res. 301:307–321.PubMedCrossRefGoogle Scholar
  30. Hiraoka, M., and Shimamura, M., 1977, Neural mechanisms of the corneal blink reflex in cats. Brain Res. 125:265–275.PubMedCrossRefGoogle Scholar
  31. Holstege, G., and Collewijn, H., 1984, The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J. Comp. Neurol. 209:139–175.CrossRefGoogle Scholar
  32. Holstege, G., Tan, J., van Ham, J.J., and Graveland, G.A., 1986, Anatomical observations on the afferent projections to the retractor bulbi moto- neuronal cell group and other pathways possibly related to the blink reflex in the cat. Brain Res. 374:321–334.PubMedCrossRefGoogle Scholar
  33. Huang, C-M., Liu, G., and Huang, R., 1982, Projections from the cochlear nucleus to the cerebellum. Brain Res. 244:1–8.PubMedCrossRefGoogle Scholar
  34. Kawamura, K., 1975, The pontine projection from the inferior colliculus in the cat. An experimental anatomical study. Brain Res. 9:309–322.Google Scholar
  35. Kawamura, K., and Brodal, A., 1973, The tectopontine projection in the cat: An experimental study with comments on pathways for teleceptive impulses to the cerebellum. J. Comp. Neurol. 149:371–356.PubMedCrossRefGoogle Scholar
  36. Larsell, O., 1952, The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J. Comp. Neurol. 97:281–356.PubMedCrossRefGoogle Scholar
  37. Larsell, O., 1953, The anterior lobe of the mammalian and the human cerebellum. Anat. Rec. 115:341.Google Scholar
  38. Lavond, D.G., McCormick, D.A., and Thompson, R.F., 1984, A nonrecoverable learning deficit. Physiol. Psychol. 12:103–110.Google Scholar
  39. Lorente de No, R., 1932, The interaction of the corneal reflex and vestibular nystagmus. Am. J. Physiol. 103:704–711.Google Scholar
  40. Loucks, R.B., 1935, The experimental delimitation of neural structures essential for learning. II. The conditioning of salivary and striped muscle responses to faradization of the sigmoid gyri. J. Psychol. 1:5–44.Google Scholar
  41. Marek, G.J., McMaster, S.E., Gormezano, I., and Harvey, J.A., 1984, The role of the accessory abducens nucleus in the rabbit nictitating membrane response. Brain Res. 299:215–229.PubMedCrossRefGoogle Scholar
  42. Marr, D., 1969, A theory of cerebellar cortex. J. Physiol. (Lond.) 202:437–470.Google Scholar
  43. McCormick, D.A., Clark, G.A., Lavond, D.G., and Thompson, R.F., 1982a, Initial localisation of the memory trace for a basic form of learning. Proc. Nat. Acad. Sci. 79:2731–2735.PubMedCrossRefGoogle Scholar
  44. McCormick, D.A., Guyer, P.E., and Thompson, R.F., 1982b, Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit. Brain Res. 244:347–350.PubMedCrossRefGoogle Scholar
  45. McCormick, D.A., Lavond, D.G., Clark, G.A., Kettner, R.E., Rising, C.E., and Thompson, R.F., 1981, The engram found? Role of the cerebellum in classical conditioning of the nictitating membrane and eyelid response. Bull. Psychon. Soc. 18:103–105.Google Scholar
  46. McCormick, D.A., Lavond, D.G., and Thompson, R.F., 1982c, Comcomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: correlations and implications. Physiol. Behav. 28:769–775.PubMedCrossRefGoogle Scholar
  47. McCormick, D.A., Steinmetz, J.E., and Thompson, R.F., 1985, Lesions of the inferior olivary complex cause extinction of classically conditioned eyeblink response. Brain Res. 359:120–130.PubMedCrossRefGoogle Scholar
  48. McCormick, D.A., and Thompson, R.F., 1984a, Cerebellum: Essential involvement in the classically conditioned eyelid response. Science 223:296–299.PubMedCrossRefGoogle Scholar
  49. McCormick, D.A., and Thompson, R.F., 1984b, Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci. 4:2811–2822.PubMedGoogle Scholar
  50. Miles, T.S., and Wiesendanger, M., 1975a, Organisation of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the S1 face area of the cat. J. Physiol (Lond.) 245:425–445.Google Scholar
  51. Miles, T.S., and Wiesendanger, M., 1975b, Climbing fibre inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the S1 face area of the cerebral cortex in the cat. J. Physiol (Lond.) 245:425–445.Google Scholar
  52. Montarolo, P.G., Palestini, M., and Strata, P., 1982, The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J. Physiol. 332:187–202.PubMedGoogle Scholar
  53. Mower, G., Gibson, A., and Glickstein, M., 1979, Tectopontine pathway in the cat: Laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. J. Neurophysiol. 42:1–15.PubMedGoogle Scholar
  54. Oakley, D.A., and Russell, I.S., 1972, Neocortical lesions and Pavlovian x conditioning. Physiol. Behav. 8:915–926.PubMedCrossRefGoogle Scholar
  55. Oakldy, D.A., and Russell, I.S., 1977, Subcortical storage of Pavlovian conditioning in the rabbit. Physiol. Behav. 18:931–937.CrossRefGoogle Scholar
  56. Powell, G.E., Berthier, N.E., and Moore, J.W., 1979, Efferent neuronal control of the nictitating membrane response in the rabbit (Oryctolagus cuniculus): A reexamination. Physiol. Behav. 23:299–308.PubMedCrossRefGoogle Scholar
  57. Rosenfield, M.E., Dovydaitis, A., and Moore, J.W., 1985, Brachium conjunc- tivum and rubrobulbar tract: brain stem projections of red nucleus essential for the conditioned nictitating membrane response. Physiol. Behav. 34:751–759.PubMedCrossRefGoogle Scholar
  58. Rosina, A., and Provini, L., 1984, Pontocerebellar system linking the two hemispheres by intracellular branching. Brain Res. 296:365–369.PubMedCrossRefGoogle Scholar
  59. Rosina, A., Provini, L., Bentivoglio, M., and Kuypers, H.G.J.M., 1980, Ponto-neocerebellar axonal branching as revealed by double fluorescent retrograde labelling technique. Brain Res. 195:462–466.CrossRefGoogle Scholar
  60. Schmaltz, L.W., and Theios, J., 1972, Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J. Comp. Physiol. Psychol. 79:328–333.PubMedCrossRefGoogle Scholar
  61. Skelton, R.W., Donegan, N.H., and Thompson, R.F., 1984, Superior colliculus lesions disrupt classical conditioning to visual but not auditory stimuli. Soc. Neurosci. Abstr. 10:132.Google Scholar
  62. Steinmetz, J.E., McCormick, D.A., Baier, C.A., and Thompson, R.F., 1984, Involvement of the inferior olive in classical conditioning of the rabbit eyelid. Soc. Neurosci. Abstr. 10:122.Google Scholar
  63. Thompson, R.F., 1976, The search for the engram. Am. Psychol. 31:209–227.PubMedCrossRefGoogle Scholar
  64. Torigoe, Y., Blanks, R.H.I., and Precht, W., 1986, Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 243:88–105.Google Scholar
  65. Torigoe, Y., Wenoker, W., and Cegavske, C.F., 1981, Neural substrates of the classically conditioned nictitating membrane preparation: Trigeminal system afferents. Soc. Neurosci. Abstr. 7:753.Google Scholar
  66. van Rossum, J., 1969, Corticonuclear and corticovestibular projections of the cerebellum. Ph.D. thesis, University of Leiden.Google Scholar
  67. Voogd, J., 1969, The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of cerebellar evolution and development. R. Llinas, ed., Am. Med. Assoc. Chicago.Google Scholar
  68. Voogd, J., and Bigare, F., 1980, Topographical distribution of olivary and corticonuclear fibers in the cerebellum: A review. In: The inferior olivary nucleus, J. Courville, C. de Montigny, and Y. Lamarre, eds., Raven Press, New York.Google Scholar
  69. Woodruff-Pak, D., Lavond, D.G., and Thompson, R.F., 1985, Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348:249–260.PubMedCrossRefGoogle Scholar
  70. Yeo, C.H., and Hardiman, M.J., 1984, Olivary function in the conditioned NMR - a simple form of motor learning. Neurosci. Letts. 18:S130.Google Scholar
  71. Yeo, C.H., and Hardiman, M.J., 1984, Lesions of the inferior olive abolish conditioning of the nictitating membrane response in the rabbit. Neurosci. Letts. 22:S227.Google Scholar
  72. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1984, Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13:261–266.PubMedCrossRefGoogle Scholar
  73. Yeo, C.H., Hardiman, M.J., and Glickstein, M, 1985a, Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp. Brain Res. 60:87–98.Google Scholar
  74. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1985b, Classical conditioning of the nictitating membrane response of the rabbit: II. Lesions of the cerebellar cortex. Exp. Brain Res. 60:99–113.Google Scholar
  75. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1985c, Classical conditioning of the nictitating membrane response of the rabbit: III. Connections of cerebellar lobule HVI. Exp. Brain Res. 60:114–126.CrossRefGoogle Scholar
  76. Yep, C.H., Hardiman, M.J., and Glickstein, M., 1986a, Classical conditioning of the nictitating membrane response of the rabbit: IV. Lesions of the inferior olive. Exp. Brain. Res. 63:81–92.Google Scholar
  77. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1986b, Middle cerebellar peduncle lesions impair classical conditioning of the eyeblink response. Neurosci. Letts. 26:S559.Google Scholar
  78. Yeo, C.H., Hardiman, M.J., Glickstein, M., and Russell, I.S., 1982, Lesions of the cerebellar nuclei abolish the classically conditioned nictitating membrane response. Soc. Neurosci. Abstr. 8:22.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. H. Yeo
    • 1
  1. 1.Department of AnatomyUniversity College LondonLondon WC1England

Personalised recommendations