Skip to main content

Field Assisted Moderators

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 169))

Abstract

Conventional positron moderators rely on diffusion to transport a small proportion of e+ implanted from a radioactive source to a surface where they may be emitted into vacuum with an energy distribution peaked at a value characteristic of the negative workfunction of that material. The energy spread of the distribution will depend on the e+ properties in the bulk and at the surface of the moderating material. Since the initial conception of a positron moderator by Madanski and Resettil and the first practical demonstration by Cherry2 in 1958 there has been considerable improvement in conversion efficiencies. Of particular significance was the work of Mills who showed that many clean metal surfaces emit slow positrons and was thus able to develop higher efficiency moderators4. The factors which govern the suitability of a particular material for use as a positron moderator are given in the following empirical relationship for the moderator efficiency, p1,5,

$$P = {y_o} \alpha \sqrt {D\tau }$$
(1)

where yo is the probability of slow positron emission from the surface (the branching ratio), α is the β+ absorption coefficient and \(\sqrt {D\tau }\) the e+ diffusion coefficient with D and τ the positron diffusion constant and lifetime respectively. To maximise these factors, recently work has largely concentrated on dense single crystal materials especially W(110) for which an effi-ciency of 3.2 × 10−6 has been reported6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Madanski and F. Rasetti, An Attempt to Detect Thermal Energy Positrons, Phys. Rev. 79:397 (1950).

    Article  ADS  Google Scholar 

  2. W. Cherry, Ph.D. dissertation (Princeton University 1958).

    Google Scholar 

  3. A.P. Mills, Jr., P.M. Platzman and B.L. Brown, Slow Positron Emission from Metal Surfaces, Phys. Rev. Lett. 41:1076 (1978).

    Article  ADS  Google Scholar 

  4. A.P. Mills, Jr., Appl. Phys. Lett. 37:1980

    Google Scholar 

  5. A.P. Mills, Jr., in “Positron Solid State Physics, Proc. S.I.F. course LXXXIII”, W. Brandt and A. Dupasquier, ed. North-Holland, Amsterdam (1983). p440.

    Google Scholar 

  6. A. Vehanen, K.G. Lynn, P.J. Schultz and M. Eldrup, Improved Slow Positron Yield Using a Single Crystal W. Moderator, Appl. Phys. A32:163 (1983).

    ADS  Google Scholar 

  7. C.A. Murray, A.P. Mills, Jr., and J.E. Rowe, Correlation Between Electron and Positron Workfunctions on Copper Surfaces, Surf. Sci. 100: 647 (1980).

    Article  ADS  Google Scholar 

  8. M. Debowska, R. Ewertoski and W. Swiatkowski, Appl. Phys. A36:47 (1985).

    ADS  Google Scholar 

  9. As Ref. 4 p.445

    Google Scholar 

  10. D.A. Fisher, K.G. Lynn and W.E. Frieze, Reemitted-Positron Energy-Loss Spectroscopy: a Novel Probe for Absorbate Vibrational Levels, Phys. Rev. Lett. 50:1149 (1983).

    Article  ADS  Google Scholar 

  11. A.P. Mills, Jr., and E.M. Gullikson, Solid Neon Moderator for Producing Slow Positrons, to be published.

    Google Scholar 

  12. E.M. Gullikson and A.P. Mills, Jr., Positron Dynamics in Rare Gas Solids, Phys. Rev. Lett. 57:376 (1986).

    Article  ADS  Google Scholar 

  13. K.G. Lynn and B.T.A. McKee, Some Investigations of Moderators for Slow Positron Beams, Appl. Phys. 19:247 (1979).

    Google Scholar 

  14. C.D. Beling, R.I. Simpson, M. Charlton, F. Jacobsen, T.C. Griffith, P. Moriarty and S. Fung, A Field Assisted Moderator for Low Energy Positron Beams, Appl. Phys. A42:111 (1987).

    ADS  Google Scholar 

  15. A.P. Mills, Jr. and L. Pfeiffer, Mobility of Positrons in Silicon, Phys. Lett. 63A:118 (1976).

    ADS  Google Scholar 

  16. E.J. Van Loenen, A.E.M.J. Fischer, J.F. Van der Veen and F. Legoues, High Resolution Studies of NiSi2 Ultrathin Film Formation by Ion Beam Scattering and Cross Section TEM, Surf. Sci. 154:52 (1985).

    Article  Google Scholar 

  17. K.G. Lynn, private communication.

    Google Scholar 

  18. A.P. Mills, Jr. and C.A. Murray, Diffusion of Positrons to Surfaces Appl. Phys. 21:323 (1980).

    Google Scholar 

  19. B. Nielsen, K.G. Lynn, A. Vehanen and P.J. Schultz, Positron Diffusion in Si, Phys. Rev. B32:2296 (1985).

    ADS  Google Scholar 

  20. E.M. Gullikson, private communication.

    Google Scholar 

  21. J. Chevallier and A. Nylandsted Larsen, Epitaxial Nickel and Cobalt Silicide Formation by Rapid Thermal Annealing, Appl. Phys. A39:141 (1986).

    ADS  Google Scholar 

  22. J.F. Van der Veen, private communication.

    Google Scholar 

  23. R.T. Tung, Shottky-Barrier Formation at Single-Crystal Metal Semi-conductor Interface, Phys. Rev. Lett. 52:461 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  24. S.M. Sze, “Physics of Semiconductor Devices”, Wiley Intersciences, New York, 2nd Ed. (1981).

    Google Scholar 

  25. G. Lang and S. De Benedetti, Angular Correlation of Annihilation Radiation in Various Substances, Phys. Rev. 108:914 (1957).

    Article  ADS  Google Scholar 

  26. O. Sueoka and S. Koide, Poistron Mobility in Diamond, J. Phys. Soc. Japan, 41:116 (1976).

    Article  ADS  Google Scholar 

  27. W. Brandt and R. Paulin, Positron Implantation Profile in Solids, Phys. Rev. B15:2511 (1977).

    Google Scholar 

  28. A.P. Mills, Jr. and W. Crane, Emission of Band-Gap-Energy Positrons from Surfaces of LiF, NaF and Other Ionic Crystals, Phys. Rev. Lett. 53:2165 (1984).

    Article  ADS  Google Scholar 

  29. K.G. Lynn and B. Nielsen, comment, in Phys. Rev. Lett. 58:61 (1987).

    Article  ADS  Google Scholar 

  30. S.D. Brorson, D.J. DiMaria, M.V. Fischetti, F.L. Pesavento, P.M. Solomon and D.W. Dong, Direct measurement of the energy distribution of hot electrons in silicon dioxide, J. Appl. Phys. 53:1302 (1985)

    Article  ADS  Google Scholar 

  31. J. Chevallier, private communication.

    Google Scholar 

  32. J. Van House and P.W. Zitzewitz, Probing the Positron Moderation Process Using High-Intensity, Highly Polarized Slow Positron Beams, Phys. Rev. A29:96 (1984).

    ADS  Google Scholar 

  33. A.R. Green, J. Dancy and E. Bauer, Insignificance of Lattice Misfit for Epitaxy, J. Vac. Sci. Tech. 7:1 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Beling, C.D., Simpson, R.I., Charlton, M. (1987). Field Assisted Moderators. In: Humberston, J.W., Armour, E.A.G. (eds) Atomic Physics with Positrons. NATO ASI Series, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0963-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0963-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8267-9

  • Online ISBN: 978-1-4613-0963-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics