The High Brightness Beam at Brandeis

  • K. F. Canter
  • G. R. Brandes
  • T. N. Horsky
  • P. H. Lippel
  • A. P. MillsJr.
Part of the NATO ASI Series book series (NSSB, volume 169)


At the first workshop in this series, York University — 1981, the “brightness enhancement” proposal1 which was about a year old at the time was referred to as an “ambitious method” of increasing the brightnessper-volt RV of a slow positron beam.2 Today, however, there are several groups actively pursuing or actually using brightness enhancement in their research. This talk will deal mainly with the brightness enhanced beam at Brandeis since it is a particularly high performance beam and uses well documented optics. The latter feature is important since the lack of well documented electrostatic optics for slow positron beams, in particular the immersion lens gun, has often inhibited the use of electrostatic transport in favor of the more intuitively simple, but generally more restrictive, magnetically guided beam. Equally important have been the improvements due to single crystal metal moderators in the planar back-scattering geometry3 over the large transverse energy spreads of parallel vane moderators.4 A large transverse energy component ET (perpendicular to the initial beam direction) can be as injurious to the focussability of the beam as it is to the predictability of the positron trajectories through the system. In addition to briefly reviewing the design and operation of the Brandeis beam, some results will be presented in the context of the current diffraction and microbeam experiments for which the beam is presently being used.


Positron Annihilation Positron Beam Brightness Enhancement Final Beam Slow Positron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Mills, Jr., Appl. Phys.Google Scholar
  2. 2.
    K. F. Canter and A. P. Mills, Jr. Can. J. Phys. 60:551 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    A.Vehanen, K. G. Lynn, P.J. Schultz, and M. Mldrup, Appl. Phys. A32:163 (1983).ADSGoogle Scholar
  4. 4.
    J. M. Dale, L. D. Hulett, and S. Pendyala, Surf. Interface Anal. 2: 199 (1980).CrossRefGoogle Scholar
  5. 5.
    K. F. Canter, T. Horsky, P. H. Lippel, W. S. Crane, and A. P. Mills, Jr., “Development of High Brightness Slow Positron Beams,” in Positron (Electron)-Gas Scattering, W. E. Kauppila, T. S. Stein, and J. M. Wadehra, eds., World Scientific Press, Singapore, p. 202, 1986.Google Scholar
  6. 6.
    K. F. Canter, P. H. Lippel, W. S. Crane, and A. P. Mills, Jr., “Modified Soa Immersion Lens Positron Gun,” in Positrons in Solids, Surfaces and Atoms, A. P. Mills, Jr., W. S. Crane, and K. F. Canter, eds., World Scientific Press, Singapore, p. 199, 1986.Google Scholar
  7. 7.
    K. F. Canter, “Low Energy Positron and Positronium Diffraction,” in Positron Annihilation in Gases, J. W. Humberston and M. R. C. McDowell, eds., Plenum Press, NY, p. 219, 1986.Google Scholar
  8. 8.
    D. A. Fischer, K. G. Lynn, and D. W. Gidley, Phys. Rev. B33: 4479 (1986).ADSGoogle Scholar
  9. 9.
    W. E. Frieze, D. W. Gidley, and K. G. Lynn, Phys. Rev. B31: 5628 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    P. J. Schultz, E. M. Gullikson, and A. P. Mills, Jr., Phys. Rev. B34: 442 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    D. M. Chen, K. G. Lynn, R. Pareja, and B. Nielsen, Phys. Rev. B31: 4123 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    K. F. Canter, “Slow Positron Optics,” in Positrons in Solids, Surfaces and Atoms, A. P. Mills, Jr., W. S. Crane, and K. F. Canter, eds., World Scientific Press, Singapore, p. 102, 1986.Google Scholar
  13. 13.
    G. R. Brandes, K. F. Canter, T. N. Horsky, P. H. Lippel, and A. P. Mills, Jr., Bull. Am. Phys. Soc. 54, 1944 (1987). A manuscript on the Microbeam is in preparation for submission to Rev. Sci. Inst.Google Scholar
  14. 14.
    G. M. A. Hyder, M. S. Dababneh, Y.-F. Hsieh, W. E. Kauppila, C. K. Kwan, M. Mandavi-Hezaveh, and T. S. Stein, Phys. Rev. Lett. 57: 2252 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    T. S. Stein, W. E. Kauppila, V. Pol, J. H. Smart, and G. Jesion, Phys. Rev. A17: 1600 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    B. L. Brown, “Creation of Monoenergetic Positronium in a Gas,” in Positron Annihilation, P. C. Jain, R. M. Singru, and K. P. Gopinathan, eds., World Scientific Press, Singapore, p. 201, 1985.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. F. Canter
    • 1
  • G. R. Brandes
    • 1
  • T. N. Horsky
    • 1
  • P. H. Lippel
    • 1
  • A. P. MillsJr.
    • 2
  1. 1.Department of PhysicsBrandeis UniversityWalthamUSA
  2. 2.AT&T Bell LaboratoriesMurray HillsUSA

Personalised recommendations