Overview of Models Used in Biological Monitoring

  • Tord Kjellstrom
Part of the Rochester Series on Environmental Toxicity book series (RSET)


Models are used to describe in an abstract but simplified manner the relationships between different biological phenomena or the development of these phenomena with time. In biological monitoring activities, models can be used, for instance, to relate measurements of a metal in blood to the recent exposure or the total body burden or they can be used to relate the measurements of a metal in urine to the probability of a health effect of that metal in an individual or a population. Kinetic models, in which a time variable is incorporated, can be used to analyze or predict changes of the metal concentrations with time.


Metal Concentration Blood Lead Level Body Burden Critical Organ Biological Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakir, F., Damluji, S.F., Amin-Azki, L., Murtadha, M., Khalidi, A., Al-Rawi, N.Y., Tikriti, S., Dhahir, H.I., Clarkson, T.W., Smith, J.C., and Doherty, R.A., 1973, Methylmercury poisoning in Iraq, Science, 181: 230–241.PubMedCrossRefGoogle Scholar
  2. Batschelet, E., Brand, L., and Steiner, A., 1979, On the kinetics of lead in the human body, J. Math. Biol., 8: 15–23.PubMedCrossRefGoogle Scholar
  3. Berglund, F. and Berlin, M., 1969, Risk of methyl mercury cumulation in man and mammals and the relation between body burden of methyl mercury and toxic effects, in: “Chemical Fallout. Current research on persistent pesticides”, M.W. Miller and G.G. Berg, eds., pp. 258–273, C.C. Thomas, Springfield.Google Scholar
  4. Bernard, S.R., 1977, Dosimetric data and metabolic model for lead, Health Phys., 32: 44–46.PubMedGoogle Scholar
  5. Bradley, J.V., 1968, “Distribution-free statistical tests”, Prentice-Hall Inc., Englewood Cliffs, N.J.Google Scholar
  6. Bruaux, P., Claeys, F., Thiessen, L., Verduyn, G., Friberg, L., Lind, B., Svartengren, M., Greek, A., Vassallo, A., Pina-Garza, E., and Garcia- Galiano, E., 1985, “Assessment of human exposure to lead: Comparison between Belgium, Malta, Mexico and Sweden”, National Swedish Institute of Environmental Medicine, Stockholm.Google Scholar
  7. Camner, P., Clarkson, T.W. and Nordberg, G.F., 1979, Routes of exposure, dose and metabolism of metals, in: “Handbook on the Toxicology of Metals”, L. Friberg, Nordberg, G.F. and Vouk, V., eds., pp. 65–97, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  8. Diem, K. and Lentner, C., eds., 1980, Documenta, Geigy, J.R. Geigy, S.A. Basel, Switzerland.Google Scholar
  9. Elinder, C-G., Kjellström, T., Linnman, L. and Pershagem, G., 1978a, Urinary excretion of cadmium and zinc among persons from Sweden, Environ. Res., 15: 473–484.PubMedCrossRefGoogle Scholar
  10. Elinder, C-G., Kjellstrom, T., Lind, G., Molander, M.L., and Silander, T., 1978b, Cadmium concentrations in human liver, blood and bile: comparison with a metabolic model, Environ. Res., 17: 236–241.PubMedCrossRefGoogle Scholar
  11. Ellis, K.J., Morgan, W.D., Zanai, I., Yasumura, S., Vartsky, D., and Cohn, S.H., 1981, Critical concentrations of cadmium in human renal cortex: dose-effect studies in cadmium smelter workers, J. Toxicol. Environ. Health, 7: 691–703.PubMedCrossRefGoogle Scholar
  12. Ellis, K.J., Yuen, K., Yasumura, S. and Cohn, S.H., 1984, Dose-response analysis of cadmium in man: Body burden vs. kidney dysfunction, Environ. Res., 33: 216–226.PubMedCrossRefGoogle Scholar
  13. Friberg, L., Nordberg, G.F. and Vouk, V.B., 1986, “Handbook on the Toxicology of Metals”, 2nd ed., Elsevier/North Holland Biomedical Press, Amsterdam, 1162, pp.Google Scholar
  14. Harley, N.H. and Kneip, T.H., 1985, “An integrated metabolic model for lead in humans of all ages”, EPA report, Contract B44899, U.S. Environment Protection Agency, Washington.Google Scholar
  15. Holtzman, R.B., 1978, Application of radiolead to metabolic studies, in: “The Biogeochemistry of Lead in the Environment”, J.O., Nriagu, ed., pp. 37–96, El sevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  16. Johnson, T. and Paul, R., 1986, “Estimation of daily lead uptake in children and resulting end-of-month blood lead levels”, EPA report, Contract 68–02–4309, U.S. Environment Protection Agency, Washington.Google Scholar
  17. Kang, H.K., Infante, P.F. and Carra, J.S., 1983, Determination of blood-lead elimination patterns of primary lead smelder workers, J. Toxicol. Environ. Health, 11: 199–210.CrossRefGoogle Scholar
  18. Kjellstrom, T., 1971, A mathematical model for the accumulation of cadmium in human kidney cortex, Nord. Hyg. Tidskr., 53: 111–119.Google Scholar
  19. Kjellstrom, T., 1977, “Accumulation and renal effects of cadmium in man, A dose-response study”, Doctoral thesis, Department of Environmental Hygiene, Karolinska Institute, Stockholm.Google Scholar
  20. Kjellstrom, T., 1979, Exposure and accumulation of cadmium in populations from Japan, the United States and Sweden, Environ. Health Persp. 28: 169–197.Google Scholar
  21. Kjellstrom, T., 1985, Critical organs, critical concentrations and whole-body dose-response relationships, in: “Cadmium and Health. Vol. 2”, L. Friberg, C-G. Elinder, T. Kjellstrom and G.F. Nordberg, eds., pp. 231–246, CRC Press, Boca Raton, FL.Google Scholar
  22. Kjellstrom, T. and Nordberg, G.F., 1978, A kinetic model of cadmium metabolism in the human being, Environ. Res., 16: 248–269.PubMedCrossRefGoogle Scholar
  23. Kjellstrom, T. and Nordberg, G.F., 1985, Kinetic model of cadmium metabolism, in: “Cadmium and Health Vol.1”, L. Friberg, C-G. Elinder, T. Kjellstrom and G.F. Nordberg, eds., pp. 179–197, CRC Press, Boca Raton, FL.Google Scholar
  24. Kjellstrom, T., Friberg, L., Nordberg, G.F., and Piscator, M. 1971, Further considerations on uptake and retention of cadmium in human kidney cortex, in: “Cadmium in the Environment”, L. Friberg, M. Piscator and G.F. Nordberg, eds., pp. 140–155, CRC Press, Boca Raton, FL.Google Scholar
  25. Kjellstrom, T., Elinder, C-G. and Friberg, L., 1984, Conceptual problems in establishing the critical concentration of cadmium in human kidney cortex, Environ. Res., 33: 284–295.PubMedCrossRefGoogle Scholar
  26. Kneip, T.J., Mallon, R.P. and Harley, N.H., 1983, Biokinetic modeling for mammalian lead metabolism, Neurotoxicology, 4: 189–192.PubMedGoogle Scholar
  27. Marcus, A.H., 1985a, Multicompartment kinetic models for lead. I. Bone diffusion models for long-term retention, Environ. Res. 36: 441–458.PubMedCrossRefGoogle Scholar
  28. Marcus, A.H., 1985b, Multicompartment kinetic models for lead. II. Linear kinetics and variable absorption in humans without excessive lead exposures, Environ. Res., 36: 459–472.PubMedCrossRefGoogle Scholar
  29. Marcus, A.H., 1985c, Multicompartment kinetic models for lead. III. Lead in blood plasma and erythrocytes, Environ. Res., 36: 473–489.PubMedCrossRefGoogle Scholar
  30. Matsubara-Khan, J., 1974, Compartmental analysis for the evaluation of biological half-lives of cadmium and mercury in mouse organs, Environ. Res., 7: 54–67.CrossRefGoogle Scholar
  31. Matsubara-Khan, J. and Machida, K., 1975, Cadmium accumulation in mouse organs during the sequential injections of cadmium - 109, Environ. Res., 10: 29–38.PubMedCrossRefGoogle Scholar
  32. Nordberg, G.F., Kjellstrom, T. and Nordberg, M., 1985, Kinetics and metabolism, in: “Cadmium and Health, Vol. 1”, L. Friberq, C-G. Elinder, T. KfelLstrom and G.F. Nordberg, eds., pp. 103–178, CRC Press, Boca Raton, FL.Google Scholar
  33. Rabinowitz, M.B., Wetherill, G.W. and Kopple, J.O., 1976, Kinetic analysis of lead metabolism in healthy humans, J. Clin. Invest., 58: 260–270.PubMedCrossRefGoogle Scholar
  34. Roels, H.A., Lauwerys, R.R., Buichet, J-P., Bernard, A., Chettle, D.R., Harvey, T.C., and Al-Haddad, I.K., 1981, In vivo measurement of liver and kidney cadmium in workers exposed to this metal: its significance with respect to cadmium in blood and urine, Environ. Res., 26: 217–240.PubMedCrossRefGoogle Scholar
  35. Sakurai, M., 1984, Paper presented at the International Congress on Occupational Health, Dublin.Google Scholar
  36. Shank, K.E., Vetter, R.J. and Ziemer, P.L., 1977, A mathematical model of cadmium transport in a biological system, Environ. Res., 13: 209–214.PubMedCrossRefGoogle Scholar
  37. Spencer, H., Holtzman, R.B., Kramer, L., and Ilcewicz, F.H., 1977, Metabolic balances of 210-Pb and 210-Po at natural levels, Radiat. Res., 69: 168–184.CrossRefGoogle Scholar
  38. Swedish Expert Group, 1971, Methyl mercury in fish, a toxicologic-epidemiologic evaluation of risks, Nord. Hyg. Tidskr., Suppl. 4, 364 pp. Task Group on Lung Dynamics, 1966, Deposition and retention models for internal dosimetry of the human respiratory tract, Health Phys., 12: 173–208.Google Scholar
  39. Task Group on Metal Toxicity, 1976, Consensus report, in: “Effects and Dose-response Relationships of Toxic Metals”, G.F. Nordberg, ed., pp. 1–111, Elsevier, Amsterdam.Google Scholar
  40. Travis, C.C. and Haddock, A.G., 1980, Interpretation of the observed age-dependency of cadmium body burden in man, Environ. Res., 22: 46–60.PubMedCrossRefGoogle Scholar
  41. Tsuchiya, K. and Sugita, M., 1971, A mathematical model for deriving the biological half-life of a chemical, Nord. Hyg. Tidskr., 53: 105–110.Google Scholar
  42. Vahter, M., 1982, “Assessment of human exposure to lead and cadmium through biological monitoring”, National Swedish Institute of Environmental Medicine, Stockholm.Google Scholar
  43. Vahter, M., Marafante, E., Lindgren, A., and Dencker, L., 1982, Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74-As-arsenite, Arch. Toxicol., 51: 65–77.CrossRefGoogle Scholar
  44. WHO, 1976, “Environmental Health Criteria, 1. Mercury”, World Health Organization, Geneva.Google Scholar
  45. WHO, 1977, “Environmental Health Criteria, 3. Lead”, World Health Organization, Geneva.Google Scholar
  46. WHO, 1985, “Guidelines for the study of dietary intakes of chemical contaminants”, WHO Offset Publ. No. 87, World Health Organization, Geneva.Google Scholar
  47. Zielhuis, R.L. and Henderson, P.T., 1986, Definitions of monitoring activities and their relevance for the practice of occupational health. Int. Arch. Occ. Environ. Health, 57: 249–257.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tord Kjellstrom
    • 1
    • 2
  1. 1.Unit for Prevention of Environmental PollutionWorld Health OrganizationGenevaSwitzerland
  2. 2.Division of Environmental HealthWorld Health OrganizationGenevaSwitzerland

Personalised recommendations