Skip to main content

Biological Monitoring of Urine for Exposure to Toxic Metals

  • Chapter

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

Urine is the most commonly used biological medium for monitoring exposure to toxic metals. A properly collected and analyzed urine sample can provide important information about metal exposure and effects of exposure on renal function. Urine can be obtained using noninvasive procedures and thus permits collection of practically an unlimited number of samples with little discomfort or risk to the individual being monitored. This makes urine highly acceptable for monitoring purposes to both the individuals being monitored and to the monitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E.F., 1943, “Physiological Regulations,” pp. 89–109, 263–275, Jaques Cattrell Press, Lancaster, PA.

    Google Scholar 

  • Adolph, E.F., 1947, ed., Urinary excretions of water and solutes, in: “Physiology of Man in the Desert,” p. 97, Interscience Publishers, Inc., NY. (Reprint 1967, Hanover Publishing, NY )

    Google Scholar 

  • Addis, T., Barrett, E., Poo, J.L., Ureen, H.J., and Lippman, R.W., 1951, The relation between protein consumption and diurnal variations of the endogenous creatinine clearance in normal individuals, J. Clin. Invest., 30: 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Alessio, L., Berlin, A., Dell’Orto, A., Toffoletto, F. and Ghezzi, I., 1985, Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators, Int. Arch, Occup. Environ. Health, 55: 99–106.

    Article  CAS  Google Scholar 

  • Armstrong, B.G. and Kazantzis, G., 1985, A problem in looking for relationships between concentrations of urinary components, Br. J. Int. Med., 42: 70–71.

    CAS  Google Scholar 

  • Axelsson, B. and Piscator, M., 1966, Renal damage after prolonged exposure to cadmium. An experimental study, Arch. Environ. Health, 12: 360–373.

    PubMed  CAS  Google Scholar 

  • Bach, P.H., Bonner, F.W., Bridges, J.W. and Lock, E.A., 1982, “Nephrotoxicity: Assessment and Pathogenesis,” John Wiley and Sons, New York.

    Google Scholar 

  • Banda, P.W., Tuttle, M.S., Sherry, A.E. and Blois, M.S., 1980, Total creatinine creatinine content of the first morning urine is independent of dietary change, Clin. Chem., 26: 535–536.

    PubMed  CAS  Google Scholar 

  • Barclay, J.A., Cooke, W.T., Kenney, R.A. and Nutt, M.E., 1947, The effects of water diuresis and exercise in the volume and composition of the urine, Am. J. Physiol., 148: 327–337.

    PubMed  CAS  Google Scholar 

  • Berlin, A., Alessio, L., Sesna, G., Del’Orto, A. and Ghezzi, I., 1985, Problems concerning the usefulness of adjustment of urinary cadmium for creatinine and specific gravity, Int. Arch. Environ. Health., 55: 107–111.

    Article  CAS  Google Scholar 

  • Bernard, A., Lauwerys, R. and Gengoux, P., 1981, Characterization of the proteinuria induced by prolonged oral administration of cadmium in female rats, Toxicology, 20: 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Bleiler, R.A. and Schedle, H.P., 1962, Creatinine excretion: Variability and relationships to diet and body size, J. Lab. Clin, Med., 59: 945–955.

    CAS  Google Scholar 

  • Buchet, J.P., Roels, H., Bernard, A., Lauwerys, R., 1980, Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapor, J. Occup. Med., 22: 741–750.

    PubMed  CAS  Google Scholar 

  • Chang, R.L.S., Veki, I.F., Troy, J.L., Deen, W.M., Robertson, C.R. and Brenner, B.M. 1975, Permselectivity of the glomerular capillary wall to macromolecules. I. Experimental studies in rats using neutral dextran, Biophys. J., 15: 887–906.

    Article  PubMed  CAS  Google Scholar 

  • Clark, L.C., Thompson, H.L., Beck, E.I. and Jacobsen, W., 1951, Excretion of creatine and creatinine by children, Am. J. Pis. Child, 81: 774–783.

    CAS  Google Scholar 

  • Clarkson, T.W. and Magos, L., 1967, The effect of sodium maleate on the renal deposition and excretion of mercury, Br. J. Pharmacol. Chemother., 31: 560–567.

    PubMed  CAS  Google Scholar 

  • Cramer, K., Cramer, H. and Selander, S., 1967, A comparative analysis between variation in 24-hour urinary creatinine output and 24-hour urinary volume, Clin. Chim. Acta., 15: 331–335.

    Google Scholar 

  • Crim, M.C., Calloway, D.H. and Margen, S., 1975, Creatine metabolism in men: Urinary creatine and creatinine excretions with creatine feeding, J. Nutr., 105: 428–438.

    PubMed  CAS  Google Scholar 

  • Elkins, H.B. and Pagnotto, L.B., 1965, Is the 24-hour urine sample a fallacy, Am. Ind. Hyg. Assoc. J., 26: 456–460.

    Article  PubMed  CAS  Google Scholar 

  • Elkins, H.B., Pagnotto, L.D. and Richmond, M., 1966, The osmolality adjustment in urinalysis, J. Occup. Med., 8: 528–531.

    PubMed  CAS  Google Scholar 

  • Elkins, H.B., Pagnotto, L.D. and Smith, H.L., 1974, Concentration adjustments in urinalysis, Am. Ind. Hyg. Assoc., 35: 559–565.

    Article  CAS  Google Scholar 

  • Ellis, K.J., Yartsky, D., Zanzi, I., Cohn, S.H., and Yasumura, S., 1979, Cadmium: In vivo measurement in smokers and nonsmokers, Science 205: 323–325.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, K.J., Yasumura, S. and Cohn, S, 1981, Hair cadmium content: Is it a biological indicator of body burden of cadmium for the occupationally exposed worker, Am. J. Indust. Med., 2: 323–330.

    Article  CAS  Google Scholar 

  • Ellis, E.N., Brouhard, B.H., Lagrone, L. and Travis, L., 1983, Urinary excretion of N-acetyl-beta-D-glucosaminidase in children with type I diabetes mellitus, Diabetes Care, 6: 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Falck, F.Y., Fine, L.J., Smith, R.G., McClatchey, K.D., Annesley, T., England, B. and Schork, A.M., 1983a, Occupational cadmium exposure and renal status, Am. J., Ind. Med., 4: 541–549.

    Article  CAS  Google Scholar 

  • Falck, F.Y., Fine, L.J., Smith, R.G., Garvey, J., Schork, A., England, B. McClatchey, K.D. and Linton, J., 1983b, Metallothionein and occupational exposure to cadmium, Brit. J. Ind. Med., 40: 305–313.

    CAS  Google Scholar 

  • Farber, S.J., Berger, E.Y. and Earle, D.P., 1951, Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose, J. Clin. Invest. 30: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, G.B. and Bruining, G.J., 1976, Urinary creatinine excretion and lean body mass, Am. J. Nutr., 29: 1359–1366.

    CAS  Google Scholar 

  • Friberg, L., 1952, Further investigations on chronic cadmium poisoning: A study of rabbits with radioactive cadmium, Arch. Ind. Hyg. Occup. Med., 5: 30–36.

    CAS  Google Scholar 

  • Goldman, R., 1954, Creatinine excretion in renal failure, Proc. Soc. Exp. Biol. Med., 85: 446–448.

    PubMed  CAS  Google Scholar 

  • Gottelli, C.A., Astolfi, E., Cox, C., Cernichiari, E. and Clarkson, T.W., 1985, Early biochemical effects of organic mercury fungicide on infants: “Dose makes the poison”, Science, 227: 638–640.

    Article  Google Scholar 

  • Greenblatt, D.J., Ransil, B.J., Harmatz, J.S., Smith, T.W., Duhme, D.W. and Koch-Weser, J., 1976, Variability of 24-hour urinary creatinine excretion by normal subjects, J. Clin. PharmacolI., 16: 321–328.

    CAS  Google Scholar 

  • Gross, S.B., Yeager, D.W., and Middendorf, M.S., 1976, Cadmium in liver, kidney, and hair of humans, fetal through old age, J. Toxicol. Environ. Health, 2: 153–167.

    Article  PubMed  CAS  Google Scholar 

  • Heymsfield, S.B., Artega, C., McManus, C., Smith, J. and Moffitt, S., 1983, Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method, Am. J. Clin. Nutr., 37: 478–494.

    PubMed  CAS  Google Scholar 

  • Isaacson, L.C., 1959, Urinary osmolality and specific gravity, Lancet 1: 72–73.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, M.H., Levy, S.E., Kaufman, R.M., Gallinek, W.E. and Donnelly, O.W., 1962, Urine osmolality, Arch. Int. Med., 110: 83–89.

    Google Scholar 

  • Jones, J.D. and Burnett, P.C., 1974, Creatinine metabolism in humans with decreased renal function: Creatinine deficit, Clin. Chem. 20: 1204–1212.

    PubMed  CAS  Google Scholar 

  • Kattus, A.A., Sinclair-Smith, B., Genest, J., and Newman, E.V., 1949, The effect of exercise on the renal mechanism of electrolyte excretion in normal subjects, Bull. Johns Hopkins Hosp. 84: 344–368.

    PubMed  CAS  Google Scholar 

  • Kehoe, R.A., Cholak, J., Hubbard, D.M., Bombach, K. and McNary, R.R., 1943, Experimental studies on lead absorption and excretion and their relation to the diagnosis and treatment of lead poisoning, J. Ind. Hyg. Toxicol. 25: 71–79.

    CAS  Google Scholar 

  • Kowal, N.E. and Zirkes, M., 1983, Urinary cadmium and beta-2-microglobul in: Normal urinary values and concentration adjustment, J. Toxicol. Environ. Hlth., 11:607–624.

    Google Scholar 

  • Lauwerys, R.R., 1983, “Industrial Chemical Exposure: Guidelines for Biological Monitoring,” Biomedical Publications, Davis, CA.

    Google Scholar 

  • Lauwerys, R., Roels, H., Regniers, H., Buchet, J.P., Bernard, A. and Goret, A., 1979, Significance of cadmium concentration in blood and urine in workers exposed to cadmium, Environ. Res., 20: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Leaf, A., Couter, W.T. and Newburgh, L.H., 1949, Some effects of variation in sodium intake and of different sodium salts in normal subjects, J. Clin. Invest., 28: 1082–1090.

    Article  Google Scholar 

  • Levine, L. and Fahy, J.P., 1945, Evaluation of urinary lead determinations: I. The significance of the specific gravity, J. Ind. Toxicol. Hyg. Toxicol., 27: 217–223.

    CAS  Google Scholar 

  • Lewis, P.R. and Lobban, M.C., 1956, Patterns of electrolyte excretion in human subjects during a prolonged period of life on a 22-hour day, J. Physiol. 133: 670–680.

    PubMed  CAS  Google Scholar 

  • Long, J.H., 1903, On the relation of the specific gravity of urine to the solids present, J. Am. Chem. Soc. 25: 257–262.

    Article  CAS  Google Scholar 

  • Magos, L. and Stoychev, T., 1969, Combined effect of sodium maleate and some thiol compounds on mercury excretion and redistribution in rats, Br. J. Pharmacol., 35: 121–126.

    PubMed  CAS  Google Scholar 

  • Manchester, R.C., 1933, The diurnal rhythm in water and mineral exchange, J. Clin. Invest., 12: 995–1008.

    Article  PubMed  CAS  Google Scholar 

  • Mayersohn, M., Conrad, K.A. and Achari, R., 1983, The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance, Br. J. Clin. Pharmacol., 15: 227–230.

    PubMed  CAS  Google Scholar 

  • McPhaul, J.J. and Simonaitus, J.J., 1968, Observations on the mechanisms of glucosuria during glucose loads in normal and nondiabetic subjects, J. Clin. Invest., 47: 702–711.

    Article  PubMed  Google Scholar 

  • Meroney, W.H., Rubini, M.E. and Blythe, W.B., 1958, The effect of antecedent diet on urine concentrating ability, Ann. Int. Med., 48: 562–573.

    PubMed  CAS  Google Scholar 

  • Mills, J.N. and Stanbury, S.W., 1952, Persistent 24-hour renal excretory rhythm on a 12-hour cycle of activity, J. Physiol., 117: 22–37.

    PubMed  CAS  Google Scholar 

  • Oken, D.E., Cotes, S.C. and Mende, C.W., 1972, Micropuncture study of tubular transport of albumin in rats with aminoglycoside nephrosis, Kid. Int., 1: 3–11.

    Article  CAS  Google Scholar 

  • Pesce, A.J. and First, R.M., 1979, “Proteinuria: An Integrated Review,” Marcel Dekker, New York.

    Google Scholar 

  • Piscator, M., 1983, The importance of quality control for estimating dose-effect and dose-response relationships, in: “Trace Element - Analytical Chemistry in Medicine and Biology”, Vol. 2, P. Bratter and P. Schramel eds., pp. 747–764, Walter de Gruyter and Co., Berlin.

    Google Scholar 

  • Price, R.G., 1982, Urinary enzymes, nephrotoxicity and renal disease, Toxicology, 23: 99–134.

    Article  PubMed  CAS  Google Scholar 

  • Price, J.W., Miller, M. and Hayman, J.M., 1940, The relation of specific gravity to composition and total solids in normal human urine, J. Clin. Invest., 19: 537–554.

    Article  PubMed  CAS  Google Scholar 

  • Ransil, B.J., Greenblatt, D.J. and Koch-Weser, J., 1977, Evidence for systemic temporal variation in 24-hour urinary creatinine excretion, J. Clin. Pharmacol., 17: 108–119.

    PubMed  CAS  Google Scholar 

  • Rapoport, S., Brodsky, W.A., West, C.D. and Mackler, B., 1949, Urinary flow and excretion of solutes during osmotic diuresis in hydropenic man, Am. J. Physiol., 156: 433–442.

    PubMed  CAS  Google Scholar 

  • Refsum, H.E. and Stromme, S.B., 1974, Urea and creatinine production and excretion in urine during and after prolonged heavy exercise, Scand. J. Clin. Lab. Invest., 33: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Roels, H.A., Lauwerys, R.R., Buchet, J.-P., Bernard, A., Chettle, D.P., Harvey, T.C. and Al-Haddad, I.K., 1981a, In vivo measurement of liver and kidney cadmium in workers exposed to the metal: Its significance with respect to cadmium in blood and urine, Environ. Res. 26: 217–240.

    Article  PubMed  CAS  Google Scholar 

  • Roels, H.A. Lauwerys, R.R., Buchet, J.-P. and Bernard, A., 1981b, Environmental exposure to cadmium and renal function of aged women in three areas of Belgium, Environ. Res., 24: 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, J.D., Furguson, B.C., Davis, R.K. and Rossmesil, E.C., 1952, The influence of cortisone upon the diurnal rhythm of renal excretory function, J. Clin. Invest., 31: 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, J.D., Nelson, W.P., Strauss, M.B., Davis, R.K. and Rossmesil, E.C., 1953, Variation in the diuretic response to ingested water related to the renal excretion of solutes, J. Clin. Invest., 32: 394–404.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, J.W., Andres, R., Tobin, J.D., Norris, A.H. and Shock, N.W., 1976, The effect of age on creatinine clearance in man: A cross-sectional and longitudinal study, J. Gerontol., 31: 155–163.

    PubMed  CAS  Google Scholar 

  • Rowe, J.L., Brouhard, B.H., Dunn, J.K. and Lagrone, L., 1985, Differential response of urinary N-acetyl-beta-D-glucosaminidase to two osmotic diuretics in the dog, J. Lab. Clin. Med., 105: 731–736.

    PubMed  CAS  Google Scholar 

  • Schiller, W.R., Long, C.L. and Blakemore, W.S., 1979, Creatinine and nitrogen excretion in seriously ill and injured patients, Surg. Gynecol. Obstet., 149: 562–566.

    Google Scholar 

  • Scott, P.J. and Hurley, P.J., 1968, Demonstration of individual variation in constancy of 24-hour urinary creatinine excretion, Clin. Chim. Acta., 21: 411–414.

    Article  PubMed  CAS  Google Scholar 

  • Selander, S. and Cramer, K., 1970, Interrelationships between lead in blood, lead in urine and ALA in urine during lead work, Brit. J. Ind. Med., 27: 27–39.

    Google Scholar 

  • Shaikh, Z.A. and Hirayama, K., 1979, Metallothionein in the extracellular fluids as an index of human toxicity, Environ. Health Perspect., 28: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H.W., 1951, “The Kidney,” pp. 81–96, 613–636, Oxford University Press, New York.

    Google Scholar 

  • Smith, O.W., 1942, Creatinine excretion in women: Data collected in the course of urinalysis for female sex hormones, J. Clin. Endocrinol., 2: 1–12.

    Article  CAS  Google Scholar 

  • Srivastava, S.S., Mani, K.Y., Soni, C.M. and Bhati, J., 1967, Effect of muscular exercises on urinary excretion of creatine and creatinine. Ind. J. Med., 55: 953–960.

    CAS  Google Scholar 

  • Stonard, M.D., Chater, B.V., Duffield, D.P., Nevitt, A.L., O’Sullivan, J.J. and Steel, G.T., 1983, An evaluation of renal function in workers occupationally exposed to mercury vapor, Int. Arch. Occup. Environ. Health, 52: 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, M.B., Lamdin, E., Smith, P. and Bleifer, D.J., 1958, Surfeit and deficit of sodium: A kinetic concept of sodium excretion, Arch. Int. Med., 102: 527–536.

    CAS  Google Scholar 

  • Sunderman, F.W. Jr., Hopfer, S.M., Crisostomo, M.C. and Stoeppler, M., 1986, Rapid analysis of nickel in urine by electrothermal atomic absorption spectrophotometry, Ann. Clin. Chem. Lab. Med., 16: 219–230.

    CAS  Google Scholar 

  • Tandon, S.K., Magos, L. and Cabral, J.R.P., 1980, Protection against mercuric chloride by nephrotoxic agents which do not induce thionein, Toxicol. Appl. Pharmacol., 52: 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Thun, M.J., Baker, D.B., Steenland, K., Smith, A.B., Halperin, W., Berl, T., 1985, Renal toxicity in uranium mill workers, Scand. J. Work Environ. Health, 11: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama, C., Shaikh, Z.A., Nogawa, K., Koyashi, E. and Honda, R., 1982, Urinary metallothionein as a new index of renal dysfunction in “Itai-itai” disease patients and other Japanese women environmentally exposed to cadmium, Arch. Toxicol., 50: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Tola, S., Kilpio, J., Virtamo, M. and Haapa, K., 1977, Urinary chromium as an indicator of the exposure of welders to chromium, Scand. J. Work Environ. Health, 3: 192–202.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski, B., Piotrowski, J.K. and Szendzikowski, S., 1971, The influence of thioacetamide on the excretion of mercury in rats, Toxicol. Appl. Pharmacol., 18: 374–386.

    Article  Google Scholar 

  • Whiting, P.H., Ross, I.S. and Borthwick, L., 1979, Serum and urine N-acetyl-beta-D-glucosaminidase in diabetes, Clin. Chim. Acta., 92: 459–463.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, A.W., Danowski, T.S., Elkington, J.R. and Peters, J.P., 1944, Electrolyte and fluid studies during water deprivation and starvation in human subjects, and the effects of ingestion of fish, or carbohydrate, and of salt, J. Clin. Invest., 23: 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A.Y, 1950, “The Urinary Function of the Kidney,” pp. 80–85, Grune and Stratton, New York.

    Google Scholar 

  • Wolfe, A.V., 1966, “Aqueous Solutions and Body Fluids,” pp. 1–37, Harper and Row, New York.

    Google Scholar 

  • Yoshida, M.S., 1985, Relation of mercury exposure to elemental mercury levels in the urine and blood, Scand. J. Work Envion. Health, 11: 33–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Diamond, G.L. (1988). Biological Monitoring of Urine for Exposure to Toxic Metals. In: Clarkson, T.W., Friberg, L., Nordberg, G.F., Sager, P.R. (eds) Biological Monitoring of Toxic Metals. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0961-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0961-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42809-8

  • Online ISBN: 978-1-4613-0961-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics