Cytogenetic and Genetic Alterations during Hepatocarcinogenesis

  • M. Kirsch-Volders
  • S. Haesen
  • A. Deleener
  • Ph. Castelain
  • H. Alexandre
  • V. Preat
Conference paper

Abstract

The study of the cancer phenotype, should from the theoretical point of view, be considered as the study of any other phenotype. It is the result of the interaction between genotype and environment; of course this does not exclude that environmental factors can modify the inherited genotype. The cancer phenotype is dependent on the interaction of one (monogenic inheritance) or more (polygenic inheritance) “cancergenes”, which may be dominant or recessive, with the surrounding conditions which may or may not favor the progression of the pre-malignant cells. As far as the polygenic model is concerned, the expression of the cancerphenotype may be understood as the probability to combine in a given cell, the expression of a given set of genes; due to the number of cancergenes, different combinations of genesets can be responsible for the (pre)-malignant status.

Keywords

Cellulose Corn Trypsin Nylon Aflatoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Vazmus, The Molecular genetics of cellular oncogenes, Ann. Rev. Genet. 18:553 (1984)CrossRefGoogle Scholar
  2. 2.
    J. Bischop, Trends in oncogenesis. Trends in Genetics, 245 (1985)Google Scholar
  3. 3.
    H. Harris, cellfusion and the analysis of malignancy, Proc. R. Soc. Lond. B. Biol. Sci., 179: 1 (1971)PubMedCrossRefGoogle Scholar
  4. 4.
    E.P. Evans, M.D. Burtenshaw, B.B. Brown, R. Hennion and H. Harris, The analysis of malignancy by cell fusion. IX Re-examination and clarification of the cytogenetic problem, J. Cell. Sci. 56:113 (1982).PubMedGoogle Scholar
  5. 5.
    E.S. Srivatsan, F.B. William and E.J. Stanbridge, Implication of chromosome 11 in the suppression of neoplastic expression in human cell hybrids, Cancer Res. 46:6174 (1986)PubMedGoogle Scholar
  6. 6.
    A.G. Knudson, Genetics of human cancer, Ann. Rev. Genet. 20:231 (1986)PubMedCrossRefGoogle Scholar
  7. 7.
    G. Klein and E. Klein, Evolution of tumours and the impact of molecular oncology. Nature 315: 190 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    D.B. Solt and E. Farber, New principle for the analysis of chemical carcinogenesis. Nature 363:701 (1976).CrossRefGoogle Scholar
  9. 9.
    M. Lans, J. de Gerlache, H.S. Taper, V. Preat and M.B. Roberfroid, Phenobarbital as a promotor in the initiation/selection process of experimental rat hepatocarcinognesis. Carcinogenesis 4,2:141 (1983)PubMedCrossRefGoogle Scholar
  10. 10.
    D.B. Solt, A. Medline and E. Farber, Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for sequential analysis of liver carcinogenesis. Am. J. Pathol. 88:595 (1977).PubMedGoogle Scholar
  11. 11.
    A. Deleener, Ph. Castelain, V. Preat, J. de Gerlache, H. Alexandre and M. Kirsch-Volders, Changes in nucleolar transcriptional activity and nuclear DNA content during the first steps of rat hepatocarcinogenesis. Carcinogenesis, 8,2:195 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Krack, O. Gravier, M. Roberfroid and M. Mercier, Subcellular fractionation of isolated rat hepatocytes: A comparison with liver homogenate, Biochim Biophys Acta 632:619 (1980).PubMedGoogle Scholar
  13. 13.
    V. Glisin, R. Crkvenjakov and C. Byus, Ribonucleic acid isolated by cesium chloride centrifugation, Biochemistry 13:2633 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Chirgwin, A. Przybyla, R. MacDonald and W. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Aviv, P. Leder, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Natl. Acad. Sci. 69:1408 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Goyette, C. Petropoulos, P. Shank and N. Fausto, Regulated transcription of c-Ki-ras and c-myc during compensatory growth of rat liver. Mol, and cell. Biol. 4: 1493 (1984).Google Scholar
  17. 17.
    H. Godoy, D. Judah, IT. Arora, G. Neal, G. Jones, The effects of prolonged feeding with aflatoxin B1 on adult rat liver. Cancer Res. 36:2399(1976).Google Scholar
  18. 18.
    F. Gonzaler-Mujica, A. Mathias, Studies of nuclei separated by zonal centrifugation from liver of rats treated with thiocetamide. Biochem. J.132: 163 (1973).Google Scholar
  19. 19.
    G. Neal, H. Godoy, D. Judah, W. Butler, Some effects of acute and chronic dosing with aflatoxin on rat liver nuclei. Cancer Res. 36:1771 (1976)PubMedGoogle Scholar
  20. 20.
    G. Neal, W. Butler, A comparison of the changes induced in rat liver by feeding low levels of aflatoxine or an azo dye, Br. J. Cancer 37:455 (1978).CrossRefGoogle Scholar
  21. 21.
    P.E. Schwarze,E.O. Petterson, H. Tolleschaug, P.O. Seglen, Isolation of carcinogen induced diploid rat hepatocytes by centrifugal elutriation. Cancer Res. 46:4732 (1986).PubMedGoogle Scholar
  22. 22.
    V. Digernes, O. Iversen, Flow cytometry of nuclear DNA content in liver tumors in rats exposed to acetylaminofluorene, Virchows Ach (Cell Path) 4:139 (1984)CrossRefGoogle Scholar
  23. 23.
    J. Styles, B. Elliot, P. Lefevre, M. Robinsom, N. Tritchard, D. Hart, J. Ashby, Irreversible depression in the ratio of tetraploid-diploid liver nuclei in rats treated with 3′-methyl-4-dimethyl-aminoazobenzene (3′M) Carcinogenesis 6:21 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Mori, T. Tanaka, S. Sugie, M. Takhahashi, G. Williams, DNA content of liver cell nuclei of N-2-fluorrenylacetamide -induced altered foci and neoplasms in rats and human hyperplastic foci, J. of Natl. Cancer. Inst. 69: 1277 (1982).Google Scholar
  25. 25.
    F.F. Becker, R.A. Fox, K.M. Klein, S.R. Wolman, Chromosome patterns in rat hepatocytes during N-2 fluorenylacetamide carcinogenesis. J. of Natl. Cancer Inst. 46:1261 (1971).Google Scholar
  26. 26.
    J.A. Styles, M. Kelly, C.R. Elcombe, A cytological comparison between regeneration, hyperplasia and early neoplasia in the rat liver. Carcinogenesis 8,3:391 (1987).Google Scholar
  27. 27.
    M. Goyette, C. Petropoulos, P. Shank, N. Fausto, Expression of a cellular oncogene during liver regeneration. Science 219;510 (1983)PubMedCrossRefGoogle Scholar
  28. 28.
    D. Corcos, N. Defer, M. Raymondjean, B. Paris, M. Corral, L. Tichonicky, J. Kruch, D. Glaise, A. Saulnier and C. Guguen-Guillaouza, Correlated increase of the expression of the c-ras genes in chemically induced hepatocarcinomas, Biochem. and Biophvs. Res. Comm. 122; 259 (1984).CrossRefGoogle Scholar
  29. 29.
    R. Matrino, K. Hayashi, S. Sato and T. Sugimura, Expression of c-Ha-ras and c-myc genes in rat liver tumors, Biochem. and Biophys. Res. Comm., 119:1096 (1984).CrossRefGoogle Scholar
  30. 30.
    P. Jaswen, M. Goyette, P. Shank and N. Fausto, Expression of c-Ki-ras, c-Ha-ras and c-myc in specific cell types during hepatocarcinogenesis, Mol. and Cell. Biol., 5:780 (1985).Google Scholar
  31. 31.
    H. Land; L. Parada, R. Weinberg, Cellular oncogenes and multistep carcinogenesis, Science 222:771 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Kirsch-Volders
    • 1
  • S. Haesen
    • 1
  • A. Deleener
    • 1
  • Ph. Castelain
    • 1
  • H. Alexandre
    • 2
    • 3
  • V. Preat
    • 4
  1. 1.Lab.AntropogenetikaVrije Universiteit BrüsselBrusselsBelgium
  2. 2.Lab. de Cytologie et Embryologie moléculairesUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Research Associate of the National Fund for Scientific ResearchBelgium
  4. 4.Lab. de Biochimie Toxicologique et CancérologiqueUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations