Skip to main content

Abstract

Synthetic Dioxygen Carriers, a Key Area for the 1990s The promising application areas for synthetic dioxygen carriers range from internal medicine and small devices to the commodity gas market and basic fuel production and there seems little doubt this area will impact the lives of most people in the developed nations during the coming decades. Government and societal leaders, both Nationally and internationally,1,2,3continue to look to synthetics as possible eventual sources of dioxygen transport materials for temporary whole blood substitutes, envisioning such scenarios as those associated with major disasters and military engagements. Existing research has been focused on portable devices4 to provide dioxygen enriched atmospheres for those suffering such maladies as emphysema and for the very different area of underwater dioxygen supply.5,6 Dioxygen electrode systems for batteries are attractive targets on the full range of scales from tiny hearing aid cells through electric automobiles to fuel cells for the storage of off-peak energy by electric utility companies. For many large scale uses, for example foundry operation, a moderate enrichment of the dioxygen level is adequate and this is an especially attractive target area for separation techniques based on the use of transition metal dioxygen carriers.7,8 The cleansing of contaminated atmospheres is a less than obvious but related area for application. Using the same basic science and technology, control of very low levels of O2is possible with such materials since the variability of O2affinities of carriers spans many orders of magnitude (at least 6 andpossibly 10 or 12). Commodity level applications are most dramaticallyshown by the potential demands of the synfuel industry as revealed by industrial response to the synfuel goals set by the Cartera administration.9,10,11 It was concluded by American dioxygen-supplyingindustry that the existing cryogenic technology couldnotbe expanded fast enough to meet the needs of the then projected synfuel industry and that at least one new major technology would have to be exploited. The first attempts to exploit transition metal dioxygen carriers were military.12,13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advances in Blood Substitute Research, Ed. by R. B. Bolin, R. P. Geyer, and G. J. Nemo, Alan. R. Liss, Inc., New York, 1983- 2. International Symposium on Blood Substitutes, June 19-20, 1987, Bari, Italy.

    Google Scholar 

  2. D. H. Busch, Critical Care Medicine, 10, No.4, 246 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. R. R. Gagne, private communication.

    Google Scholar 

  4. J. Bonaventura and C. Bonaventura, U.S. Patent No. 4,343,715, 10 August, 1982.

    Google Scholar 

  5. “Hemosponge: Unlimited Oxygen Under the Sea,” High Technology, 75, May 1984.

    Google Scholar 

  6. I. Roman, U.S. Patent Application 393711, 30 June 1982.

    Google Scholar 

  7. A Membrane Path to Oxygen-Enriched Air,′ Science News, 151, March 6, 1982.

    Google Scholar 

  8. “Synfuels Market Makes Oxygen Producers Giddy,” Chem. Eng. News, 82, April 21, 1980.

    Google Scholar 

  9. D. P. Burke, Chem. Week., 18, July 9, 1980.

    Google Scholar 

  10. “The World’s Biggest Oxygen Producers Battle for Synfuels Business,” Chem. Week, 23, Sept. 3, 1980.

    Google Scholar 

  11. R. F. Steward, P. A. Estep, and J. J. S. Sebastian, U.S. Bur. Mines Inform., Ciro. No. 7906 (1959).

    Google Scholar 

  12. A. J. Adduoi, Chemteoh, 575 Sept. 1976.

    Google Scholar 

  13. J. E. Baldwin and J. Huff, J. Am. Chem. Soc., 95, 5757 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. N. Herron and D. H. Busch, J. Am. Chem. Soc, 103, 1236 (1981).

    Article  CAS  Google Scholar 

  15. B. Durham, T. J. Anderson, J. A. Switzer, J. F. Endicott, and M. D. Glick, Inorg. Chem., 16, 271 (1977).

    Article  CAS  Google Scholar 

  16. M. C. Weiss and V. L. Goedken, J. Am. Chem. Soc., 98, 3389 (1976).

    Article  CAS  Google Scholar 

  17. D. P. Riley and D. H. Busch, Inorg. Chem., 22, 4141 (1983)

    Article  CAS  Google Scholar 

  18. V. L. Goedken and D. H. Busch, J. Am. Chem. Soc., 94, 7355 (1972).

    Article  CAS  Google Scholar 

  19. J. C. Dabrowiak and D. H. Busch, Inorg. Chem., 14, 1881 (1975).

    Article  CAS  Google Scholar 

  20. S. Dilli, A. M. Maitra, and E. Patsalides, Inorg. Chem., 21, 2832 (1982).

    Article  CAS  Google Scholar 

  21. R. D. Jones, D. A. Summerville, and Fred Basolo, Chem. Rev., 79, 139 (1979)

    Article  CAS  Google Scholar 

  22. E. C. Niederhoffer, J. H. Timmons, and A. E. Martell, Chem. Rev., 84, 137 (1984).

    Article  CAS  Google Scholar 

  23. T. D. Smith and J. R. Pilbrow, Coord. Chem. Revs., 39, 295 (1981).

    CAS  Google Scholar 

  24. B. S. Tovrog, D. J. Kitko, and R. S. Drago, J. Am. Chem. Soc., 98, 5144 (1976).

    Article  CAS  Google Scholar 

  25. J. E. Newton and M. B. Hall, Inorg. Chem., 23, 4627 (1984).

    Article  CAS  Google Scholar 

  26. T. G. Traylor and P. S. Traylor, Ann. Rev. Biophys. Bioeng., 11, 105 (1982).

    Article  CAS  Google Scholar 

  27. D. H. Busch and C. J. Cairns, in “Synthesis of Macrocycles - The Design of Selective Complexing Agents,” Ed. by R.M. Izatt and J.J. Christensen, pp. 1–52, Wiley-Interscience, New york, 1987.

    Google Scholar 

  28. W. P. Schammel, K. S. B. Mertes, G. G. Christoph, and D. H. Busch, J. Am. Chem. Soc., 101, 1622 (1979).

    Article  CAS  Google Scholar 

  29. M. C. Thompson and D. H. Busch, J. Am. Chem. Soc., 86, 3651 (1964).

    Article  CAS  Google Scholar 

  30. E. L. Blinn and D. H. Busch, Inorg. Chem. 7,2426 (1968).

    Article  Google Scholar 

  31. K. A. Goldsby, A. J. Jircitano, D. M. Minahan, D. Ramprasad, and D. H. Busch, Inorg. Chem., in press.

    Google Scholar 

  32. G. A. Melson and D. H. Busch, J. Am. Chem. Soc., 86, 4834 (1964).

    Article  CAS  Google Scholar 

  33. V. Katovic, L. T. Taylor, and D. H. Busch, J. Am. Chem. Soc., 91, 2122 (1969).

    Article  CAS  Google Scholar 

  34. P. W. R. Corfield, J. D. Mokren, C. J. Hipp, and D. H. Busch, J. Am. Chem. Soc., 95, 4465 (1973).

    Article  CAS  Google Scholar 

  35. D. H. Busch, D. J. Olszanski, J. C. Stevens, W. P. Schammel, M. Kojima, N. Herron, L. L. Zimmer, K. A. Holter, and J. Mocak, J. Am. Chem. Soc., 103, 1472 (1981).

    Article  CAS  Google Scholar 

  36. D. H. Busch, S. C. Jackels, R. C. Callahan, J. J. Grzybowski, L. L. Zimmer, M. Kojima, D. J. Olszanski, W. P. Schammel, J. C. Stevens, K. A. Holter, and J. Mocak, Inorg. Chem., 20, 2834 (1981).

    Article  CAS  Google Scholar 

  37. T. J. Meade, Whei-Lu Kwik, N. Herron, N. W. Alcock, and D. H. Busch, J. Am. Chem. Soc., 108, 1954 (1986).

    Article  CAS  Google Scholar 

  38. N. Hoshino, K. A. Goldsby, and D. H. Busch, Inorg. Chem., 25, 3000 (1986).

    Article  CAS  Google Scholar 

  39. N. Herron, J. J. Grzyboyski, N. Matsimoto, L. L. Zimmer, G. G. Christoph, and D. H. Busch, J. Am. Chem. Soc., 104, 1999 (1982).

    Article  CAS  Google Scholar 

  40. B. Korybut-Daszkiewicz, M. Kojima, J. H. Cameron, N. Herron, M. Y. Chavan, A. J. Jircitano, B. K. Coltrain, G. L. Neer, N. W. Alcock, and D. H. Busch, Inorg. Chem., 23, 903 (1984).

    Article  CAS  Google Scholar 

  41. M. Kojima, D. Nosco, C. J. Cairns, A. J. Jircitano, D. Ramprasad, and D. H. Busch, unpublished results.

    Google Scholar 

  42. N. W. Alcock, W.-K Lin, A. Jircitano, J. D. Mokren, P. W. R. Corfield, G. Johnson, G. Novotnak, C. Cairns, and D. H. Busch, Inorg. Chem., 26, 440 (1987).

    Article  CAS  Google Scholar 

  43. J. C. Stevens, P. J. Jackson, W. P. Schammel, G. G. Christoph, and D. H. Busch, J. Am. Chem. Soc., 102, 3283 (1980).

    Article  CAS  Google Scholar 

  44. D. H. Busch, L. L. Zimmer, J. J. Grzybowski, D. J. Olszanski, S. S. C. Jackels, R. C. Callahan, and G. G. Christoph, Proc. Natl. Acad. Sci., USA, 78, 5919 (1981).

    Article  PubMed  CAS  Google Scholar 

  45. P. J. Jackson, C. Cairns, W.-K. Lin, N. W. Alcock, and D. H. Busch, Inorg. Chem., 25, 4015 (1986).

    Article  CAS  Google Scholar 

  46. N. Herron, L. L. Zimmer, J. J. Grzybowski, D. J. Olszanski, S. C. Jackels, R. W. Callahan, J. H. Cameron, G. G. Christoph, and D. H. Busch, J. Am. Chem. Soc., 105, 6585 (1983).

    Article  CAS  Google Scholar 

  47. K. J. Takeuchi, D. H. Busch, and N. W. Alcock, J. Am. Chem. Soc., 105, 4261 (1983).

    Article  CAS  Google Scholar 

  48. T. J. Meade, C. M. Fendrick, and D. H. Busch, submitted for publication.

    Google Scholar 

  49. J. C. Stevens and D. H. Busch, J. Am. Chem. Soc., 102, 3284 (1980).

    Google Scholar 

  50. J. C. Stevens, thesis, The Ohio State University, 1979.

    Google Scholar 

  51. P. J. Jackson, thesis, The Ohio State University, 1981.

    Google Scholar 

  52. D. H. Busch, J. C. Stevens, P. J. Jackson, D. Nosco, N. Matsumoto, M. Kojima, and N. W. Alcock, submitted for publication.

    Google Scholar 

  53. W. P. Schaefer, B. T. Huie, M. G. Kurilla, and S. E. Ealick, Inorg. Chem., 19, 340 (1980).

    Article  CAS  Google Scholar 

  54. J. P. Collman, T. R. Halbert, and K. S. Suslick, Metal Ion Activation of Dioxygen, Ed. by T.G. Spiro, John Wiley & Sons, New York, 1980.

    Google Scholar 

  55. J. R. Budge, P. E. Ellis Jr., R. D. Jones, J. E. Linard, F. Basolo, J. E. Baldwin and R. L. Dyer, J. Am. Chem. Soc., 101 4760 (1979).

    Article  CAS  Google Scholar 

  56. M. Sabat and J. A. Ibers, J. Am. Chem. Soc., 104, 3715 (1982).

    Article  CAS  Google Scholar 

  57. T. G. Traylor and D. V. Stynes, J. Am. Chem. Soc., 102, 5938 (1980).

    Article  CAS  Google Scholar 

  58. A. L. Crumbliss and F. Basolo, J. Am. Chem. Soc., 921, 55 (1970).

    Article  Google Scholar 

  59. M.J. Carter, D.P. Rillema, and F. Basolo, J. Am. Chem. Soc., 96, 392 (1974).

    Article  CAS  Google Scholar 

  60. Handbook of Chemistry and Physics, 53rd Ed. by R. C. Weast, p. D-55, Chemical Rubber Co., Cleveland OH, 1973.

    Google Scholar 

  61. J. H. Cameron, M. Kojima, B. Korybut-Daszkiewicz, B. K. Coltrain, T. J. Meade, N. W. Alcock, and D. H. Busch, Inorg. Chem., 26, 427 1987).

    Article  CAS  Google Scholar 

  62. W. Evans, D. Nosco, N. Stephenson, and D. H. Busch, unpublished results.

    Google Scholar 

  63. M. Y. Chavan, T. J. Meade, D. H. Busch and T. Kuwana, Inorg. Chem., 25, 314 (1986).

    Article  CAS  Google Scholar 

  64. T. Tsumaki Bull. Chem. Soc., Jpn., 13, 252 (1938).

    Article  Google Scholar 

  65. M. W. Urban, Y. Nonaka, and K. Nakamoto, Inorg. Chem., 21, 1046 (1982).

    Article  CAS  Google Scholar 

  66. K. Kakamoto, Y. Nonaka, T. Ishiguro, M. Suzuki, M. Kozuka, Y. Nishida, and S. Kida, J. Am. Chem. Soc., 104, 3386 (1982).

    Article  Google Scholar 

  67. D. F. Martin, W. C. Fernelius and M. Shamma, J. Am. Chem. Soc., 81, 130 (1959).

    Article  CAS  Google Scholar 

  68. K. Kurokura, H. Okawa and S. Kida, Bull. Chem. Soc., Jpn., 54, 2036 (1978).

    Article  Google Scholar 

  69. D. Ramprasad, W.-K. Lin, K. A. Goldsby and D. H. Busch, submitted for publication.

    Google Scholar 

  70. R. Delgado, D. Ramprasad, M. W. Glogowski, N. A. Stephenson, D. M. A. Minahan, and D. H. Busch, submitted for publication.

    Google Scholar 

  71. M. D. Braydich, J. J. Fortman and S. C. Cunmings, Inorg. Chem., 22, 484 (1983).

    Article  CAS  Google Scholar 

  72. L. Dickerson, thesis, The Ohio State University, 1986.

    Google Scholar 

  73. N. Herron, L. Dickerson and D. H. Busch, J. Chem. Soc., Chem. Commun., 884 (1983).

    Google Scholar 

  74. N. Herron, L. Dickerson, C. M. Fendrick and D. H. Busch, unpublished results.

    Google Scholar 

  75. M. L. Caste, C. J. Cairns, J. Church, W.-K. Lin, J. C. Gallucci, and D. H. Busch, Inorg. Chem., 26, 78 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Busch, D.H. (1988). Synthetic Dioxygen Carriers for Dioxygen Transport. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics