The Oxidation of Organic Compounds by Metal Complexes in Zeolites

  • Chadwick A. Tolman
  • Norman Herron

Abstract

The selective oxidation of organic compounds to desired products has long been a challenge to chemists. The industrial oxidation of hydrocarbons to useful oxygenated compounds is commercially important and is carried out on a very large scale — on the order of several billons of pounds per year. The reactions are usually carried out at high temperatures(>150°C) and pressures,1 and often leave much to be desired in terms of selectivity. The difficultylies in the fact that the desired products are often themselves easily oxidizable, so that a certain percentage of the carbon is inevitably lost to CO and CO2, and other byproducts.

Keywords

Cobalt Ozone Hydrocarbon Pyridine Ketone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Weissermel and H.-J. Arpe, “Industrial Organic Chemistry,” Verlag Chemie, New York (1978).Google Scholar
  2. 2a.
    R. E. White and M. J. Coon, Ann. Rev. Biochem., 49, 315 (1980)PubMedCrossRefGoogle Scholar
  3. 2b.
    I. C. Gunsales and S. C. Sligar, Adv. Enzymology, 47, 1 (1978)Google Scholar
  4. 3.
    M. Hamburg, B. Samuelsson, I. Bjorkhem, and H. Danielsson, p. 29 in “Molecular Mechanisms of Oxygen ACtivation,” O. Hayaishi, ed., Academic Press, New York (1974).Google Scholar
  5. 4.
    D. R. Corbin, W. C. Seidel, L. Abrams, N. Herron, G. D. Stucky, and C. A. Tolman, Inorg. Chem. 24, 1800 (1985).CrossRefGoogle Scholar
  6. 5.
    C. A. Tolman, N. Herron, M. J. Nappa, and J. D. Druliner, ‘Hydrocarbon Oxidation Studies in Du Pont’s Central Research’ in “Activation and Functionalization of Alkanes,” C. L. Hill, ed., in preparation.Google Scholar
  7. 6.
    S. Korcek, J. H. B. Chenier, J. A. Howard, and K. U. Ingold, Can. J. Chem. 50, 2285 (1972).CrossRefGoogle Scholar
  8. 7.
    R. L. McCarthy, and A. MacLachlan, Trans. Farad. Soc., 57, 1107 (1961).CrossRefGoogle Scholar
  9. 8.
    J. T. Groves, T. E. Nemo, and R. S. Meyers, J. Am. Chem. Soc., 101, 1032 (1979).CrossRefGoogle Scholar
  10. 9.
    E. Casper, S. Shapiro, and J. Piper, J. Chem. Soc. Chem. Commun., 1198 (1981).Google Scholar
  11. 10a.
    D. H. R. Barton, M. J. Gastiger, and W. B. Motherwell, J. Chem. Soc. Chem. Commun., 41 and 731 (1983);Google Scholar
  12. 10b.
    G. Balavoine, D. H. K. Barton, J. Boivin, A. Gref, N. Ozbalik, and H. Riviere, J. Chem. Soc. Chem. Commun., 1727 (1986).Google Scholar
  13. 11.
    T. H. Varkony, S. Pass, and Y. Mazur, J. Chem. Soc. Chem. Commun., 457 (1975).Google Scholar
  14. 12.
    R. D. Jones, D. A. Summerville, F. Basolo, Chem. Revs., 79, 139 (1979).CrossRefGoogle Scholar
  15. 13.
    J. P. Co11man, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Lang, and W. T. Robinson, J. Am. Chem. Soc., 97, 1427 (1975).PubMedCrossRefGoogle Scholar
  16. 14.
    N. Herron, Inorg. Chem., 25, 4714 (1986).CrossRefGoogle Scholar
  17. 15.
    Romanovsky, B. V., Proc. I n t. Symp. on Zeolite Catalysis, Siofok, May 13-16, 1985, p. 215.Google Scholar
  18. 16.
    N. Herron, C. A. Tolman, and G. D. Stucky, J. Chem. Soc. Chem. Commun., 1521 (1986).Google Scholar
  19. 17.
    M. J. Nappa, and C. A. Tolman, Inorg. Chem., 24, 4711 (1985).CrossRefGoogle Scholar
  20. 18.
    N. Herron and C. A. Tolman, unpublished results.Google Scholar
  21. 19.
    G. W. Schoenthal, Ger. Patent 2,615,625 (1976); Y. Izumi, H. Miazaki, and S. Kawahara, U. S. Patent 4,009,252 (1977); F. Mosley, U. S. Patent 4,128,627 (1978).Google Scholar
  22. 20.
    N. Herron, and C. A. Tolman, J. Am. Chem. Soc., accepted for publication.Google Scholar
  23. 21.
    B. R. Cook, T. J. Reinert, and K. S. Suslick, J. Am. Chem. Soc., 108, 7281 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Chadwick A. Tolman
    • 1
  • Norman Herron
    • 1
  1. 1.Central Research and Development DepartmentE. I. DuPont de Nemours & Co.WilmingtonUSA

Personalised recommendations