Skip to main content

Radical Cation Pathways for Selective Catalytic Oxidation by Molecular Oxygen

  • Chapter
Oxygen Complexes and Oxygen Activation by Transition Metals

Abstract

The selected oxidative conversion of a particular molecule to a desire product utilizing the abundant and inexpensive oxidant oxygen often represents a desirable method for upgrading the value of raw material. All too often, of course, this of selective chemistry does not exist. It has been a goal of or research to discover a new catalytic pathways which will permit us to utilize oxygen as a selected oxidant. During our research into better methods of oxidizing waste thioethers and in converting tertiary amine oxides, we discovered that these substrates are subjects to a novel autoxidation process which under high oxygen concentrations, elevated temperatures, and the polar solvents yields almost exclusively the sulfoxide product.1 The mechanism of this unusual autoxidation appears to involve an initial unfavorable electron transfer step (eq. 1), followed by triplet oxygen (in high concentration) trapping the resultant radical cation (eq. 2).2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. E. Correa and D. P. Riley, J. Org. Chem., 50(10), 1787 (1985).

    Article  CAS  Google Scholar 

  2. a) D. P. Riley, P. E. Correa, and G. Hardy, submitted to J. Am. Chem. Soc.; b) Portions of this work were described at the California Institute of Technology Industrial Affiliates Oxidation Symposium, Feb. (1986).

    Google Scholar 

  3. C. S. Foote and J. W. Peters, J. Am. Chem. Soc., 93, 3795 (1971).

    Article  CAS  Google Scholar 

  4. M. G. Simic, J. Chem. Educ., 58(2), 125 (1981).

    Article  CAS  Google Scholar 

  5. K. U. Ingold, Acc. Chem. Res., 2, 1 (1969).

    Article  CAS  Google Scholar 

  6. D. E. Van Sickle, F. R. Mayo, R. M. Arluck, and M. G. Zyz, J. Am. Chem. Soc., 89(4), 967 (1967)

    Article  Google Scholar 

  7. D. F. Van Sickle, F. R. Mayo, F. S. Gould, and R. M. Arluck, J. Am. Chem. Soc., 89(4), 977 (1967).

    Article  Google Scholar 

  8. W. Pritzkow, T. S. S. Rao, J. Prakt. Chem., 327(6), 887 (1985)

    Article  CAS  Google Scholar 

  9. L. T. Dao, B. Karla, W. Pritzkow, W. Schmidt-Renner, V. Voerckel, and L. Willecke, J. Prakt. Chem., 326(1), 73 (1984).

    Article  Google Scholar 

  10. D. P. Riley and P. E. Correa, J. Chem. Soc., Chem. Commun., 1097 (1986).

    Google Scholar 

  11. L. Fieser and M. Fieser, Reagents for Organic Synthesis, Wiley, New York, Vol 1, p. 471 (1967).

    Google Scholar 

  12. D. P. Riley and R. E. Shumate, J. Chem. Educ., 61, 923 (1984).

    Article  Google Scholar 

  13. T. -L. Ho, Syn. Commun., 9(4), 237 (1979)

    Article  CAS  Google Scholar 

  14. T. -L. Ho, Synthesis, 561 (1972).

    Google Scholar 

  15. F. Minisci, A. Atterio, and C. Giordano, Acc. Chem. Res., 16, 27 (1983).

    Article  CAS  Google Scholar 

  16. S. F. Nelsen and M. F. Teasley, J. Org. Chem., 51, 3221 (1986);

    Article  CAS  Google Scholar 

  17. S. F. Nelsen and K. J. Akaba, J. Am. Chem. Soc., 103, 2096 (1981);

    Article  CAS  Google Scholar 

  18. S. F. Nelsen, M. F. Teasley, and D. L. Kapp, J. Am. Chem. Soc., 108, 5503 (1986).

    Article  CAS  Google Scholar 

  19. M. Simic and E. Hayon, J. Phys. Chem., 15, 1677 (1971).

    Google Scholar 

  20. N. J. Turro, V. Ramamurthy, K. -C. Liu, A. Krebs, and R. Kemper, J. Am. Chem. Soc., 98(21), 6758 (1976).

    Article  CAS  Google Scholar 

  21. S. F. Nelsen, D. L. Kapp, F. Gerson, and J. Lopez, J. Am. Chem. Soc., 108, 1027 (1986).

    Article  CAS  Google Scholar 

  22. A. L. Buchachenko, Russ. Chem. Rev., 54(2), 117 (1985).

    Article  Google Scholar 

  23. H. Tsubomura and R. S. Mulliken, J. Am. Chem. Soc., 82, 5966 (1960)

    Article  CAS  Google Scholar 

  24. D. F. Evans, J. Chem. Soc., 1981 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Riley, D.P., Smith, M.R. (1988). Radical Cation Pathways for Selective Catalytic Oxidation by Molecular Oxygen. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics