Skip to main content

Abstract

Mobile, phagocytoeing cells were first observed in starfish larvae in 1882 by Elie Metchnikoff, who was subsequently able to demonstrate their central role in host defense against infection ln animals. In recognition of the significance of his discoveries, Metchnikoff was awarded the Nobel Prize in Physiology or Medicine in 1908. Since that time our understanding of the physiology and biochemistry of leukocytic cells has increased enormously; however, the microbicidal toxins produced by leukocytes and their disinfection mechanisms have remained poorly characterized, and are correspondingly the subject of increasing attention of medical researchers and biochemists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a comprehensive review, see: S. J. Klebanoff and R. A. Clark, “The Neutrophil: Function and Clinical Disorders,” North-Holland, Amsterdam (1978).

    Google Scholar 

  2. B. Dewald, M. Baggiolini, J. T. Curnutte, and B. M. Babior, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin Invest. 63:21 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. T. Yamaguchi, K. SatoK. Shimada, and K. Kakinuma, Subcellular localization of O2generating enzyme in guinea pig polymorphonuclear leukocytes; fractionation of subcellular particles by using a Percoll density gradient, J. Biochem. 91:31 (1982).

    PubMed  CAS  Google Scholar 

  4. J. A. Badwey and M. L. Karnovsky, Production of superoxide by phagocytic leukocytes: a paradigm for stimulus-response phenomena, Curr. Top. Cell Regul. 28:183 (1986).

    PubMed  CAS  Google Scholar 

  5. S. S. Sibbett and J. K. Hurst, Structural analysis of myeloperoxidase by resonance Raman spectroscopy, Biochemistry 23:3007 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. J. Schultz and K. Kaminker, Myeloperoxidase of the leukocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys. 96:465 (1962).

    Article  PubMed  CAS  Google Scholar 

  7. P. Elsbach, On the interaction between phagocytes and micro-organisms, N. Engl. J. Med. 16:846 (1973).

    Google Scholar 

  8. A. W. Segal, M. Geisow, R. Garcia, A. Harper, and R. Miller, The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH, Nature 290:406 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. Z. A. Cohn, The fate of bacteria within phagocytic cells I. The degradation of lsotopically labeled bacteria by polymorphonuclear leucocytes and macrophages, J. Exp. Med. 117:27 (1968).

    Article  Google Scholar 

  10. R. J. Selvaraj, B. B. Paul, R. R. Strauss, A. A. Jacobs, and A. J. Sbarra, Oxidative peptide cleavage and decarboxylation by the myeloperoxidase-hydrogen peroxide-chloride ion antimicrobial system, Infect. Immun. 9:255 (1974).

    PubMed  CAS  Google Scholar 

  11. E. M. Ayoub and J. G. White, Intraphagocytic degradation of Group A streptococci: Electron microscope studies, J. Bacteriol. 98:728 (1969).

    PubMed  CAS  Google Scholar 

  12. G. L. Mandell, Bactericidal activity of aerobic and anaerobic polymorphonuclear leukocytes, Infect. Immun. 9:337 (1974).

    PubMed  CAS  Google Scholar 

  13. R. K. Root and J. A. Metealf, Hydrogen peroxide release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of hydrogen peroxide: Studies with normal and cytochalasin B-treated cells, J. Clin. Invest. 60:1266 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. T. R. Green and D. E. Wu, The NADPH:O2oxidoreductase of human neutrophils. Stoichiometry of univalent and divalent reduction of O2, J. Biol. Chem. 261:6010 (1986).

    PubMed  CAS  Google Scholar 

  15. T. R. Green and K. L. Pratt, A reassessment of product specificity of the NADPH:02 oxidoreductase of human neutrophils, Biochem. Biophys. Res. Communf 142:213 (1987).

    Article  CAS  Google Scholar 

  16. R. T. Briggs, D. B. Drath, M. L. Karnovsky, and M. J. Karnovsky, Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method, J. Cell Biol. 67:566 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. R. T. Briggs, J. M. Robinson, M. L. Karnovsky, and M. J. Karnovsky, Superoxide production by polymorphonuclear leukocytes. A cytochemical approach, Histochemistry 84:371 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. T. R. Green, R. E. Schaefer, and M. T. Makler, Orientation of the NADPH-dependent superoxide generating oxidoreductase on the outer membrane of human PMN’s, Biochem. Biophys. Res. Commun. 94:262 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. G. L. Bablor, R. E. Rosin, B. J. McMurrich, W. A. Peters, and B. M. Babior, Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil, J. Clin. Invest. 67:1724 (1981).

    Article  Google Scholar 

  20. J. E. Harrison and J. Schultz, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371 (1976).

    PubMed  CAS  Google Scholar 

  21. J. K. Hurst, P. A. G. Carr, F. E. Hovis, and R. J. Richardson, Hydrogen peroxide oxidation by chlorine compounds. Reaction dynamics and singlet oxygen formation, Inorg. Chem. 20:2435 (1981).

    Article  CAS  Google Scholar 

  22. A. M. Harper, M. F. Chaplin, and A. W. Segal, Cytochrome b from human neutrophils is a glycoprotein, Biochem. J. 227:783 (1985).

    PubMed  CAS  Google Scholar 

  23. A. R. Cross, F. K. Higson, O. T. G. Jones, A. M. Harper, and A. W. Segal, The enzymic reduction and kinetics of oxidation of cytochrome b-245 neutrophils, Biochem. J. 204:479 (1982).

    PubMed  CAS  Google Scholar 

  24. A. R. Cross, O. T. G. Jones, A. M. Harper, and A. W. Segal, Oxidationreduction properties of the cytochrome b found in the plasmamembrane fraction of human neutrophils, Biochem. J. 194:599 (1981).

    PubMed  CAS  Google Scholar 

  25. A. R. Cross, J. F. Parkinson, and O. T. G. Jones, Mechanism of the superoxide-producing oxidase of neutrophils. O2- is necessary for the fast reduction of cytochrome b-245 by NADPH, Biochem. J. 226:881 (1985).

    PubMed  CAS  Google Scholar 

  26. A. W. Segal and O. T. G. Jones, Novel cytochrome b system in phagocytic vacuoles of human granulocytes, Nature (London) 276:515 (1978).

    Article  CAS  Google Scholar 

  27. A. W. Segal and O. T. G. Jones, Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease, FEBS Lett. 110:111 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. D. R. Light, C. Walsh, A. M. O’Callaghan, E. J. Goetzl, and A. I. Tauber, Characteristics of cofactor requirement for the superoxidegenerating NADPH oxidase of human polymorphonuclear leukocytes, Biochemistry 20:1468 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. K. Kakinuma, M. Kaneda, T. Chiba, and T. Ohnishi, Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase, J. Biol. Chem. 261:9426 (1986).

    PubMed  CAS  Google Scholar 

  30. T. A. Gabig and B. A. Lefker, Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent O2 generating oxidase from human neutrophils, Biochem. Biophys. Res.Commun. 118:430 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. D. R. Crawford and D. L. Schneider, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662 (1982).

    PubMed  CAS  Google Scholar 

  32. C. C. Cunningham, L. R. De Chatelet, P. I. Spach, J. W. Parce, M. J. Thomas, C. J. Lees, and P. S. Shirley, Identification and quantitation of electron transport components in human polymorphonuclear neutrophils, Biochim. Biophys. Acta 682:430 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. T. G. Gabig and B. A. Lefker, Activation of human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559 J. Biol. Chem. 260:3991 (1985).

    PubMed  CAS  Google Scholar 

  34. A. R. Cross, O. T. G. Jones, R. Garcia, and A. W. Segal, The subcellular localization of ubiquinone in human neutrophils, Biochem. J. 216:765 (1983).

    PubMed  CAS  Google Scholar 

  35. R. Lutter, R. van Zwieten, R. S. Weening, M. N. Hamers, and D. Roos, Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts), J. Biol. Chem. 259:9603 (1984).

    PubMed  CAS  Google Scholar 

  36. G. A. Glass, D. M. DeLisle, P. de Togni, T. G. Gabig, B. H. Magee, M. Markert, and B. M. Babior, The respiratory burst oxidase of human neutrophils. Further studies of the purified enzyme, J. Biol. Chem. 261:13247 (1986).

    PubMed  CAS  Google Scholar 

  37. P. F. Urban and M. Klingenberg, Redox potentials of ubiquinone and cytochrome in the respiratory chain, Eur. J. Biochem. 9:510 (1969).

    Article  Google Scholar 

  38. P. Bellavite, O. T. G. Jones, A. R. Cross, E. Papini, and P. Rossi, Composition of partially purified NADPH oxidase from pig neutrophils, Biochem. J. 223:639 (1984).

    PubMed  CAS  Google Scholar 

  39. A. G. Segal, P. G. Heyworth, S. Cockcroft, and M. M. Barrowman, Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a M -44,000 protein, Nature (London) 316:547 (1985).

    Article  CAS  Google Scholar 

  40. P. G. Heyworth and A. W. Segal, Further evidence for the involvement of a phosphoprotein in the respiratory burst oxidase from human neutrophils, Biochem. J., 239:723 (1986).

    PubMed  CAS  Google Scholar 

  41. T. Hayakawa, K. Suzuki, S. Suzuki, P. C. Andrews, and B. M. Babior, A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease, J. Biol. Chem. 261:9109 (1986).

    PubMed  CAS  Google Scholar 

  42. J. K. Hurst, J. M. Albrich, T. R. Green, H. Rosen and S. Klebanoff, Myeloperoxidase-dependent fluorescein chlorination by stimulated neutrophils, J. Biol. Chem. 259:4812 (1984).

    PubMed  CAS  Google Scholar 

  43. M. B. Grisham, M. M. Jefferson, D. F. Melton, and E. L. Thomas, Chlorination of endogenous amines by Isolated neutrophils: Ammoniadependent bactericidal, cytotoxic, and cytolytic activities of the chloramines, J. Biol. Chem. 259:10404 (1984).

    PubMed  CAS  Google Scholar 

  44. C. S. Foote, T. E. Goyne, and R. I. Lehrer, Assessment of chlorination by human neutrophils, Nature 301:715 (1983).

    Article  PubMed  CAS  Google Scholar 

  45. S. J. Weiss, R. Klein, A. Slivka, and M. Wei, Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation, J. Clin. Invest. 70:598 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. J. M. Zglinczynski and T. Stelmaszynska, Chlorinating ability of human phagocytizing leukocytes, Eur. J. Biochem. 56:157 (1975).

    Article  Google Scholar 

  47. C. S. Foote, Mechanisms of photosensitized oxidation, Science 162:963 (1968).

    Article  PubMed  CAS  Google Scholar 

  48. R. C. Allen, Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation, Biochem. Biophys. Res. Commun. 63:675 (1975).

    Article  PubMed  CAS  Google Scholar 

  49. H. Rosen and S. J. Klebanoff, Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 252:4803 (1977).

    PubMed  CAS  Google Scholar 

  50. A. M. Held, D. J. Halko, and J. K. Hurst, Mechanisms of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc. 100:5732 (1978).

    Article  CAS  Google Scholar 

  51. E. Sander and W. P. Jencks, General acid and base catalysis of the reversible addition of hydrogen peroxide to aldehydes, J. Am. Chem. Soc. 90:3817 (1968).

    Article  Google Scholar 

  52. J. M. Albrich, C. A. McCarthy, and J. K. Hurst, Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. USA 78:210 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. A. M. Held and J. K. Hurst, Ambiguity associated with use of singlet oxygen trapping agents in myeloperoxidase-catalyzed reactions, Biochem. Biophys. Res. Commun. 81:878 (1978).

    Article  PubMed  CAS  Google Scholar 

  54. B. D. Cheson, R. L. Christensen, R. Sperline, B. E. Kohler, and B. M. Babior, The origin of the chemiluminescence of phagocytosing granulocytes, J. Clin. Invest. 58:789 (1976).

    Article  PubMed  CAS  Google Scholar 

  55. J. C. Morris, Kinetics of reactions between aqueous chlorine and nitrogen compounds, In: “Principles and Applications of Water Chemistry,” S.D. Faust and J.V. Hunter, eds., Wiley, New York (1967).

    Google Scholar 

  56. B. B. Paul, A. A. Jacobs, R. R. Strauss and A. J. Sbarra, Role of the phagocyte In host-parasite Interactions. XXIV. Aldehyde generation by the myeloperoxidase-hydrogen peroxide antimicrobial system: A possible in vivo mechanism of action, Infect. Immun. 2:414 (1970).

    PubMed  CAS  Google Scholar 

  57. E. L. Thomas, Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Effect of exogenous amines on antibacterial action against Escherichia coli, Infect. Immun. 25:110 (1979).

    PubMed  CAS  Google Scholar 

  58. J. M. Albrich, J. H. Gilbaugh III, K. B. Callahan, and J. K. Hurst, Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coll, J. Clin. Invest. 78:177 (1986).

    Article  PubMed  CAS  Google Scholar 

  59. W. C. Barrette, Jr., J. M. Albrich, and J. K. Hurst, Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli, manuscript submitted.

    Google Scholar 

  60. E. L. Thomas, Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immun. 23:522 (1979).

    PubMed  CAS  Google Scholar 

  61. J. M. Albrich and J. K. Hurst, Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites, FEBS Lett. 144:157 (1982).

    Article  PubMed  CAS  Google Scholar 

  62. W. C. Barrette, Jr., and J. K. Hurst, unpublished observations.

    Google Scholar 

  63. F. M. Harold, “The Vital Force: A Study of Bioenergetics,” W. H. Freeman, New York (1986).

    Google Scholar 

  64. C. J. Knowles, Microbial metabolic regulation by adenine nucleotide pools, Symp. Soc. Gen. Microbiol. 27:241 (1977).

    CAS  Google Scholar 

  65. W. Epstein and L. Lalmins, Potassium transport in Escherichia coli: Diverse systems with common control by osmotic forces, Trends Biochem. Sci. 5:21 (1980).

    Article  CAS  Google Scholar 

  66. S. J. Klebanoff and C. B. Hamon, Role of myeloperoxidase-mediated anti-microbial systems in intact leukocytes, J. Reticuloendothel. Soc. 12:170 (1972).

    PubMed  CAS  Google Scholar 

  67. P. Elsbach and J. Weiss, A reevaluation of the roles of the oxygendependent and oxygen-independent microbicidal systems of phagocytes, Rev. Infect. Pis. 5:843 (1983).

    Article  CAS  Google Scholar 

  68. J. A. Fee, Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7:84 (1982)

    Article  CAS  Google Scholar 

  69. B. Halliwell, Superoxide and superoxide-dependent formation of hydroxyl radicals are Important in oxygen toxicity, Trends Biochem. Sci. 7:271 (1982).

    Google Scholar 

  70. D. T. Sawyer and J. S. Valentine, How super is superoxide? Acc. Chem. Res. 14:393 (1981).

    Article  CAS  Google Scholar 

  71. R. B Johnston, Jr., B. B. Keele, Jr., H. P. Misra, J. E. Lehmeyer, L. S. Webb, R. L. Baehner, and K. V. Rajagopalan, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357 (1975).

    Article  PubMed  CAS  Google Scholar 

  72. M. R. Green, H. A. O. Hill, M. J. Okolow-Zubkowska, and A. W. Segal, The production of hydroxyl and superoxide radicals by stimulated human neutrophils—measurements by epr spectroscopy, FEBS Lett. 100:23 (1979).

    Article  PubMed  CAS  Google Scholar 

  73. H. Rosen and S. J. Klebanoff, Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy, J. Clin. Invest. 64:1725 (1979).

    Article  PubMed  CAS  Google Scholar 

  74. B. E. Britigan, G. M. Rosen, Y. Chai, and M. S. Cohen, Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry, J. Biol. Chem. 261:4426 (1986).

    PubMed  CAS  Google Scholar 

  75. S. J. Weiss, P. K. Rustagi, and A. F. LoBuglio, Human granulocyte generation of hydroxyl radical, J. Exp. Med. 147:316 (1978).

    Article  PubMed  CAS  Google Scholar 

  76. S. J. Klebanoff and H. Rosen, The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes, Ciba Found. Symp. 65:263 (1979).

    CAS  Google Scholar 

  77. S. J. Klebanoff and H. Rosen, Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase, J. Exp. Med. 148:490 (1978).

    Article  PubMed  CAS  Google Scholar 

  78. T. Navok and M. Chevion, Transition metals mediate enzymatic inactivation by favism-inducing agents, Biochem. Biophys. Res. Commun. 122:297 (1984).

    Article  PubMed  CAS  Google Scholar 

  79. E. Shinar, T. Navok, and M. Chevion, The analogous mechanism of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper, J. Biol. Chem. 258:14778 (1983).

    PubMed  CAS  Google Scholar 

  80. A. Samuni, J. Aronovitch, D. Godinger, M. Chevion, and G. Czapskl, On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism, Eur. J. Biochem. 137:119 (1983).

    Article  PubMed  CAS  Google Scholar 

  81. A. Samuni, M. Chevion, and G. Czapski, Unusual copper-induced sensitization of the biological damage due to superoxide radicals, J. Biol. Chem. 256:12632 (1981).

    PubMed  CAS  Google Scholar 

  82. G. J. McClune and J. A. Fee, Stopped flow spectrophotometrie observation of superoxide dlsmutatlon in aqueous solution, FEBS Lett. 67:294 (1976).

    Article  PubMed  CAS  Google Scholar 

  83. D. A. Rowley and B. Halliwell, Superoxide-dependent and ascorbatedependent formation of hydroxyl radicals in the presence of copper salts: A physiologically significant reaction? Arch. Biochem. Biophys. 225:279 (1983), and references therein.

    Article  PubMed  CAS  Google Scholar 

  84. J. E. Repine, R. B. Fox, and E. M. Berger, Hydrogen peroxide kills Staphylococcus aureus by reacting with iron to form hydroxyl radical, J. Biol. Chem. 256:7094 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Hurst, J.K. (1988). Oxygen Activation by Neutrophils. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics