Skip to main content

Frequency and Temperature Variations of Cubic Susceptibility in Polydiacetylenes

  • Chapter
Nonlinear Optical and Electroactive Polymers

Abstract

Emergence of conjugated polymers with one dimensional π electron delocalization has opened new perspectives for getting ultra-past nonlinear optical devices with high damage threshold. Since first pioneering works, both theoretical1–4 and experimental5–6 by Ecole Polytechnique’s group in France a great interest of these materials has been demonstrated. Before, organic materials have been known as having either a large second order hyperpolarizability ϰ(2) due to dipolar moment in fundamental and/or excited state in charge transfer molecules7 or a large third order hyper-polarizability ϰ(3) with a long response time (of the order of ms) in liquid crystals8 due to the molecular reorganization under light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.C. Rustagi and J. Ducuing, Third-Order Polarizability of Conjugated Organic Molecules, Opt. Commun. 10, 258 (1974).

    Article  CAS  Google Scholar 

  2. J. Ducuing, in Nonlinear Spectroscopy, N. Bloembergen ed., North Holland Publ. Comp., Amsterdam 1977, p. 276.

    Google Scholar 

  3. C. Cojan, G.P. Agrawal and C. Flytzanis, Optical Porperties of One-Dimensional Semiconductor and Conjugated Polymers, Phys. Rev. B15, 909 (1977).

    Article  Google Scholar 

  4. G.P. Agrawal, C. Cojan and C. Flytzanis, Nonlinear Optical Properties of One-Dimensional Semiconductors and Conjugated Polymers, Phys. Rev. B17, 776 (1978).

    Article  CAS  Google Scholar 

  5. J.P. Hermann, D. Ricard and J. Ducuing, Optical Nonlinearities in Conjugated Systems: β-carotene, Appl. Phys. Lett., Z3, 178 (1973).

    Article  Google Scholar 

  6. J.P. Hermann and J. Ducuing, Third Order Polarizabilities of Long-Chain Molecules, J. Appl. Phys., 45, 5100 (1974).

    Article  Google Scholar 

  7. C. Sauteret, J.P. Hermann, R. Frey, F. Pradere, R.M. Baughman and R.R. Chance, Phys. Rev. Lett., 36, 956 (1976).

    Article  CAS  Google Scholar 

  8. For a review of X organic molecules, see Nonlinear Optical Properties of Organic Molecules and Crystals, D.S. Chemla and J. Zyss eds., Academic Press, Orlando 1987.

    Google Scholar 

  9. S.D. Durbin, S.M. Arakelian, M.M. Cheung and Y.R. Shen, Highly Nonlinear Optical Effects in Liquid crystals, J. Phys. (Paris), Colloque C2, 44, C2-161 (1983).I.C. Khoo, Nonlinear Light Scattering by Laser and D.C. Field Induced Molecular Reorientations in Nematic-Liquid-Crystal Films, Phys. Rev. A25, 1040 (1982).

    Google Scholar 

  10. P.L. Davies, Polarizabilities of Long Chain Conjugated Molecules, Trans. Faraday Soc., 47, 789 (1952).

    Google Scholar 

  11. M. Kuhn, Fortschr. Chem. Org. Nat., 16, 169 (1958).

    CAS  Google Scholar 

  12. M. Kuhn, Fortschr. Chem. Org. Nat., 17, 404 (1959)

    CAS  Google Scholar 

  13. Polydiacetylenes Synthesis, Structure and Electronic Properties.D. Bloor and R.R. Chance eds. NATO ASI Series N○102, Martinus Nijhof Publ., Dordrecht (1985).

    Google Scholar 

  14. J. Lemoigne, A. Thierry, P.A. Chollet, F. Kajzar and J. Messier, Morphology and Nonlinear Optical Properties of Poly-Dicarbonyl Hexadyine, to be published.

    Google Scholar 

  15. F. Kajzar and J. Messier, Third Harmonic Generation in Liquids, Phys. Rev., A32, 2352 (1985).

    Article  CAS  Google Scholar 

  16. F. Kajzar and J. Messier, Cubic Effects in Polydiacetylene Solutions and Films, in Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando (1987), Vol. 2, p. 51.

    Google Scholar 

  17. F. Kajzar and J. Messier, Resonance Enhancement in cubic susceptibility of Langmuir-Blodgett Multilayers of Polydiacetylene, Thin Sol. Films, 132, 11 (1985).

    Article  CAS  Google Scholar 

  18. The numerical factor in Eq. (12) is erroneous and should read 64 ri.

    Google Scholar 

  19. K. Lochner, H. Bässler, B. Tieke and G. Wegner, Photoconduction in Polydiacetylene Multilayer Structures and Single Crystals. Evidence for Band-to-Band Excitation, Phys. Stat. Sal. (6), 88, 653 (1978).

    Article  CAS  Google Scholar 

  20. L. Sebastian and G. Weiser, One Dimensional Wide Energy Bands in a Polydiacetylene Revealed by Electroreflectance, Phys. Rev. Lett., 46, 1156 (1981).

    Article  CAS  Google Scholar 

  21. H. Basler, Electrical Transport and Doping of Polydiacetylenes, in Polydiacetylenes. Synthesis, Structure and Electronic Properties,D. Bloor and R.R. Chance eds., NATO ASI Series N○102, Martinus Nijhof Publ., Dordrecht 1985, p. 135.

    Google Scholar 

  22. J.F. Ward, Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory, Rev. Mod. Phys. 37_, 1 (1965).

    Article  Google Scholar 

  23. P.W. Lanhof, S.T. Epstein and M. Karplus, Aspects of Time-Dependent Perturbation Theory, Rev. Mod. Phys., 44, 602 (1972).

    Article  Google Scholar 

  24. F. Kajzar, L. Rothberg, S. Etemad, P.A. Chollet and D. Grec, Exciton Bleaching in Langmuir-Blodgett Films of Polydiacetylene, this conference .

    Google Scholar 

  25. E.W. Hayden and E.J. Mele, Renormalization-Group Studies of the Hubbard-Peierls Hamiltonian for Finite Polyenes, Phys. Rev., B32, 6527 (1985).

    Article  CAS  Google Scholar 

  26. B.S. Hudson and B.E. Kohler, A Long-Lying Weak Transition in the Polyene a,uHDiphenyloctatetraene, Chem. Phys. Lett. 14, 299 (1972).

    Article  CAS  Google Scholar 

  27. B. Hudson and B. Kohler, Linear Polyene Electronic Structure and Spectroscopy, Ann. Rev. Phys. Chem., Z5, 437 (1974).

    Article  Google Scholar 

  28. B.E. Kohler and D.E. Schikle, Low Lying Singlet States of a Short Polydiacetylene Oligomer, preprint.

    Google Scholar 

  29. F. Kajzar, J. Messier and J. Rosilio, Nonlinear Optical Properties of Thin Films of Polysilane, J. Appl. Phys., 60, 3040 (1986).

    Article  CAS  Google Scholar 

  30. F. Kajzar and J. Messier, Third Harmonic Generation and Two Photon Absorption in a Polydiacetylene Solution, ref. 12, p. 325.

    Google Scholar 

  31. P. Prasad, Nonlinear Optical Interactions in Polymer Thin Films, Proceedings of 29th SPIE’s Annual Symposium, San Diego, 1986.

    Google Scholar 

  32. S. Schmitt-Rink, D.S. Chemla and D.A.B. Miller, Theory of Transient Excitonic Optical Nonlinearities in Semiconductor Quantum-Well Structures, Phys. Rev. B32, 6601 (1985).

    Article  CAS  Google Scholar 

  33. G.M. Carter, J.V. Hryniewicz, M.K. Thakur, Y.J. Chen and S.E. Meyler, Nonlinear Optical Processes in a Polydiacetylene Measured with Femtosecond Duration Laser Pulses, J. Appl. Phys., 49, 998 (1986).

    CAS  Google Scholar 

  34. M. Lequime and J.P. Hermann, Reversible Creation of Defects by Light in One Dimensional Conjugated Polymers, Chem. Phys., 26, 431 (1977).

    Article  CAS  Google Scholar 

  35. P.A. Chollet, F. Kajzar and J. Messier, Electric Field Induced Second Harmonic Generation and Polarization Effects in Polydiacetylene Films, Ref. 12, p. 317.

    Google Scholar 

  36. P.A. Chollet, F. Kajzar and J. Messier, Electric Field Induced Optical Harmonic Generation and Polarization Effects in Polydiacetylene Langmuir- Blodgett Multilayers, Thin Sol. Films, 132, 1 (1985

    Article  Google Scholar 

  37. J. Duming, Microscopic and Macroscopic Nonlinear Optics, in Nonlinear Optics, P.G. Harper and B.S. Wherett eds., Academic Press, London 1977, p. 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Chollet, P.A., Kajzar, F., Messier, J. (1988). Frequency and Temperature Variations of Cubic Susceptibility in Polydiacetylenes. In: Prasad, P.N., Ulrich, D.R. (eds) Nonlinear Optical and Electroactive Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0953-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0953-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8262-4

  • Online ISBN: 978-1-4613-0953-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics