Holes, Electrons, Polarons, and Bipolarons and the Thermodynamics of Electrically Active Dopants in Conducting Polymers

  • H. Reiss
  • Dai-uk Kim


This paper describes how measurements of the reversible (equilibrium) distribution of an electrically active dopant, between an external phase and a conducting polymer, can be used to investigate both electronic species and electron energy level structures in such polymers. Examples are presented, involving conventional inorganic semiconductors, and it is shown how complications anticipated with conducting polymers have occurred and been overcome in these systems. Following this, experiments on both absorption isotherms and conductivity for vapor phase iodine in both polythiophene and azite are described and analyzed for the determination of relevant species. The formations of triiodide and pentaiodide ions are indicated, and bipolarons appear to form in polythiophene.


Conducting Polymer Iodine Uptake Iodine Vapor Poly Thiophene Thermodynamic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Kroger, "The Chemistry of Imperfect Crystals," North Holland Publishing Co., Amsterdam, 1964.Google Scholar
  2. 2.
    H. Schmalzried, "Solid State Reactions," Academic Press, Inc., New York, 1974.Google Scholar
  3. 3.
    H. Reiss, C. S. Fuller, and F. J. Morin, Bell Syst. Tech. Journ. 35, 535 (1956).Google Scholar
  4. 4.
    H. Reiss, in Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research XIV "Solid State Chemistry," p. 145, (1970).Google Scholar
  5. 5.
    B. Francois, M. Bernanrd, and J. J. Andre, J. Chem. Phys. 75, 4142 (1981).CrossRefGoogle Scholar
  6. 6.
    Private communication from Professor 0. L. Chapman, Department of Chemistry and Biochemistry, University of California, Los Angeles.Google Scholar
  7. 7.
    R. R. Chance, D. S. Boudreaux, H. Eckhardt, R. L. Elsenbaumer, J. L. Bredas, and R. Silbey, in "Quantum Chemistry of Polymers-Solid State Aspects" ed. by J. Ladik et al. , D. Reidel Publishing Co. 1984.Google Scholar
  8. 8.
    A. J. Rosenberg, J. Chem. Phys. 33, 665 (1960).CrossRefGoogle Scholar
  9. 9.
    W. Kaiser, H. L. Frisch, and H. Reiss,Phys. Rev.112, 1546 (1958).CrossRefGoogle Scholar
  10. 10.
    J. R. Patel, K. A. Jackson, and H. Reiss, J. Appl. Phys. 48, 5279 (1977).CrossRefGoogle Scholar
  11. 11.
    K. Hauffe and H. Pfeiffer, Z. Metallk. 44, 27 (1953).Google Scholar
  12. 12.
    H. Reiss and C. S. Fuller in "Semiconductor" ed. by N.B. Hannay, Ch.6, Reinhold Publishing Corp. New York, 1959.Google Scholar
  13. 13.
    H. Reiss and W. D. Murphy, J. Phys. Chem. 89, 2596 (1985).CrossRefGoogle Scholar
  14. 14.
    A. J. Epstein, H. Rommelmann, R. Bigelow, H. W. Gibson, D. M. Hoffman, and D. B. Tanner, Phys. Rev. Lett. 50, 1866 (1981).CrossRefGoogle Scholar
  15. 15.
    H. Reiss, J. Chem. Phys. 25, 4087 (1956)Google Scholar
  16. 16.
    H. Reiss and Dai-uk Kim, J. Phys. Chem. 90 1973 (1986).CrossRefGoogle Scholar
  17. 17.
    Dai-uk Kim, unpublished results.Google Scholar
  18. 18.
    L. W. Shacklette and J. E. Toth, Phys. Rev. B 32, 5892 (1985).CrossRefGoogle Scholar
  19. 19.
    R. R. Chance, D. S. Boudreaux, J. L. Bredas, and R. Silbey, in "Handbook on Conducting Polymers," ed. by T. Skotheim, Marcel Dekker, New York.Google Scholar
  20. 20.
    P. M. McManus, Sze Cheng Yang, and Richard J. Cushman, J. Chem. Soc., Chem. Commun. 1556, (1985).Google Scholar
  21. 21.
    Submitted to the Journal of Physical Chemistry.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • H. Reiss
    • 1
  • Dai-uk Kim
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations