Skip to main content

Charge Transport Across Lipid Bilayer Membranes: Lipophilic Ions, Ion Carriers and Channels

  • Chapter
Bioelectrochemistry II

Abstract

The interior of a lipid bilayer is a medium of low dielectric constant and therefore represents an extremely high energy barrier for the passage of small ions such as Na+ or K+. The ion permeability of biological membranes depends, to a large extent, on the presence of specialized membrane constituents which provide energetically favourable pathways for ion transport through the apolar core of the membrane. The following chapter deals with the study of such ion transport mechanisms (carrier and channel mechanisms) using artificial lipid bilayer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. A. PARSEGIAN, Nature (London), 221, 844 (1969).

    Article  PubMed  CAS  Google Scholar 

  2. B. NEUMCKE and P. LĂ„UGER, Biophys. J., 9, 1150 (1969).

    Article  Google Scholar 

  3. S. McLAUGHLIN, Electrostatic Potentials at Membrane Solution Interfaces, in: Current Topics in Membrane and Transport, F. BRONNER and A KLEINZELLER (Editors), Academic Press, New York, (1977) Vol. 9, pp. 71–144.

    Chapter  Google Scholar 

  4. P. MUELLER, D. O. RUDIN, H. T. TIEN and W. D. WESCOT, Nature (London), 194, 979 (1962).

    Article  PubMed  CAS  Google Scholar 

  5. T. HANAI, D.A. HAYDON and J. TAYLOR, Proc. Roy. Soc. Edinburgh Sect. A, 281, 377 (1964).

    CAS  Google Scholar 

  6. C. HUANG and T.E. THOMPSON, J. Mol. Biol., 13, 183 (1965).

    Article  PubMed  CAS  Google Scholar 

  7. M. MONTAL and P. MUELLER, Proc. Nat. Acad. Sci. USA, 69, 3561 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. R. BENZ, O. FrĂ–Hlich, P. LAUGER and M. MONTAL, Biochim. Biophys. Acta, 394, 323 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. H. SCHINDLER and J.P. ROSENBUSCH, Proc. Natl. Acad. Sci. USA, 75, 3751, (1978).

    Article  PubMed  CAS  Google Scholar 

  10. B. KETTERER, B. NEUMCKE and P. LĂ„UGER, J. Membr. Biol., 5, 225 (1971).

    Article  CAS  Google Scholar 

  11. G. STARK, R. BENZ, B. KETTERER and P. LĂ„UGER, Biophys. J., 11, 981 (1971).

    Article  PubMed  CAS  Google Scholar 

  12. J.M. KUDIRKA, P.H. DAUM and C.G. ENKE, Anal. Chem., 44, 309 (1972).

    Article  CAS  Google Scholar 

  13. M.P. BORISOVA, L.N. ERMISHKIN, F.A. LIBERMAN, A.Y. SILBERSTEIN and E.M. TROFIMOV, J. Membr. Biol., 18, 243 (1974).

    Article  PubMed  CAS  Google Scholar 

  14. C. GAVACH and R. SANDEAUX, Biochim. Biophys. Acta, 413, 33 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. S.W. FELDBERG and G. KISSEL, J. Membr. Biol., 20, 269 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. R. BENZ and P. LAUGER, J. Membr. Biol., 27, 171 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. W. KNOLL and G. STARK, J. Membr. Biol., 37, 13 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. W. BROCK, G. STARK and P.C. JORDAN, Biophys. Chem., 13, 329 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. O.H. LEBLANC Jr., Biochim. Biophys. Acta, 193, 350 (1969).

    Article  CAS  Google Scholar 

  20. L.J. BRUNER, J. Membr. Biol., 22, 125 (1975).

    Article  PubMed  CAS  Google Scholar 

  21. O.S. ANDERSEN and M. FUCHS, Biophys. J., 15, 795 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. R. BENZ, P. LAUGER and K. JANKO, Biochim. Biophys. Acta, 455, 701 (1976).

    Article  PubMed  CAS  Google Scholar 

  23. P. LAUGER, R. BENZ, G. STARK, E. BAMBERG, P.C. JORDAN, A. FAHR and W. BROCK, Q. Rev. Biophys., 14, 513 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. YU. A. OVCHINNIKOV, V.T. IVANOV and A.M. SKROB, Membrane-active complexones, Elsevier Scientific Publishing Company, Amsterdam, (1974).

    Google Scholar 

  25. R. BENZ and P. LAUGER, J. Membr. Biol., 27, 171 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. P. LĂ„Uger, Science, 178, 24 (1972).

    Article  PubMed  Google Scholar 

  27. S.B. HLADKY and D.A. HAYDON, Biochim. Biophys. Acta, 274, 294 (1972).

    Article  PubMed  CAS  Google Scholar 

  28. D.W. URRY, Proc. Natl. Acad. Sci. USA, 68, 672 (1971).

    Article  PubMed  CAS  Google Scholar 

  29. E. BAMBERG, H. ALPES, H.–J. APELL, R. BENZ, K. JANKO, H. -A. KOLB, P. LAUGER and E. GROSS, FEBS Symposium No. 42, G. Semenza and E. Carafoli (Editors)), Springer Verlag, Berlin, (1977) pp. 179–201.

    Google Scholar 

Further useful readings

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Läuger, P. (1987). Charge Transport Across Lipid Bilayer Membranes: Lipophilic Ions, Ion Carriers and Channels. In: Milazzo, G., Blank, M. (eds) Bioelectrochemistry II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0951-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0951-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8261-7

  • Online ISBN: 978-1-4613-0951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics