Advertisement

Non-Equilibrium Thermodynamics of Transport

  • S. Roy Caplan

Abstract

This chapter presents in relatively simple terms the basic concepts of non-equilibrium thermodynamics (NET), and shows how these concepts can be used for the macroscopic description and evaluation of bioenergetic phenomena. The chemical and physical processes with which we are concerned in biophysics are, in the thermodynamic sense, irreversible, and generally do not take place at, or close to, equilibrium. The classical thermodynamic approach, however, is based on the consideration of equilibrium states, and its methodology depends on the notion of reversible processes, i.e. hypothetical ideal processes that can occur without disturbing equilibrium. It is a far cry from such idealized systems to the living cell — hence the need for a more comprehensive biothermodynamics. This need is exactly what NET, even in its simplest linear form, can often fulfill [1–3].

Keywords

Irreversible Process Dissipation Function Vectorial Process Phenomenological Equation GIBBS Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.R. CAPLAN and A. ESSIG, Bioenergetics and Linear Non-equilibrium Thermodynamics - The Steady State, Harvard University Press, Cambridge, Mass., (1983).Google Scholar
  2. [2]
    A. KATCHALSKY and P.F. CURRAN, Non-equilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Mass., (1965).Google Scholar
  3. [3]
    H.V. WESTERHOFF and K. van DAM in Current Topics in Bioenergetics, D.R. Sanadi (Editor), Academic Press, New York, (1979), Vol. 9, p. 1.Google Scholar
  4. [4]
    I. PRIGOGINE, Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, (1961).Google Scholar
  5. [5]
    B.A. FINLAYSON and L.E. SCRIVEN, Proc. Roy. Soc., Ser. A, 310, 183 (1969).CrossRefGoogle Scholar
  6. [6]
    O. KEDEM and A. KATCHALSKY, Biochim. Biophys. Acta, 27, 229 (1958).PubMedCrossRefGoogle Scholar
  7. [7]
    O. KEDEM and A. KATCHALSKY, J. Gen. Physiol., 45, 143 (1961).PubMedCrossRefGoogle Scholar
  8. [8]
    O. KEDEM and A. KATCHALSKY, Trans. Faraday Soc., 59, 1918 (1963).CrossRefGoogle Scholar
  9. [9]
    I. MICHAELI and O. KEDEM, Trans. Faraday Soc., 57, 1185 (1961).CrossRefGoogle Scholar
  10. [10]
    A. KATCHALSKY and O. KEDEM, Biophys. J., 2, 53 (1962).PubMedCrossRefGoogle Scholar
  11. [11]
    A.J. STAVERMAN, Rec. Tray. Chim., 70, 344 (1951).CrossRefGoogle Scholar
  12. [12]
    P. MEARES and A.H. SUTTON, J. Colloid Interface Sci., 28, 118 (1968).CrossRefGoogle Scholar
  13. [13]
    H. KRAMER and P. MEARES, Biophys. J., 9, 1006 (1969).PubMedCrossRefGoogle Scholar
  14. [14]
    W.J. MCHARDY, P. MEARES, A.H. SUTTON and J.F. THAIN, J. Colloid Interface Sci., 29, 116 (1969).CrossRefGoogle Scholar
  15. [15]
    D.G. DAWSON and P. MEARES, J. Colloid Interface Sci., 33, 117 (1970).CrossRefGoogle Scholar
  16. [16]
    T. FOLEY, J. KLINOWSKY and P. MEARES, Proc. Roy. Soc., Ser. A, 336, 327 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Roy Caplan
    • 1
  1. 1.Department of Membrane ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations