Advertisement

Structure of Biological Membranes and of Their Models. I

  • James A. Hayward
  • David C. Lee
  • Francesco Castelli
  • Dennis Chapman

Abstract

Models of biological membrane structure have evolved since 1839, when an ubiquitous delimiting structure was implied in the Cell Theory as defined by SCHLEIDEN and SCHWANN (cited in WILSON [1]). That membranes contained lipid was well established by 1930, and the concept of a lipid bilayer had been derived from the experiments of GORTER and GRENDEL [2], which showed that the minimal area occupied by a compressed monolayer of extracted erythrocyte lipid was equal to twice the surfaces area of the intact cell. The strong adsorption of added proteins to some lipid surface led DANIELLI and DAVSON [3] to propose a series of paucimolecular models that provided the major membrane paradigm until about 1950. These models implied, but did not specify, a lipid bilayer with which protein was associated mainly by polar interactions. Pauci referred to the limited thickness of the membrane, which was composed of a limited number of molecular strata.

Keywords

Lipid Bilayer Acyl Chain Biological Membrane Rotational Diffusion Polar Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. B. WILSON, The Cell in Development and Heredity, MacMillan, New York (1925).Google Scholar
  2. [2]
    E. GORTER and F. GRENDEL, J. Exp. Med., 41, 439 (1926).CrossRefGoogle Scholar
  3. [3]
    J.F. DANIELLI and H. DAVSON, J. Cell. Comp. Physiol., 5, 495 (1935).CrossRefGoogle Scholar
  4. [4]
    J.D. ROBERTSON, J. Biophys Biochem. Cytol., 3, 1043 (1957).PubMedCrossRefPubMedCentralGoogle Scholar
  5. [5]
    S.J. SINGER and G.L. NICOLSON, Science, 175, 720 (1972).CrossRefGoogle Scholar
  6. [6]
    R. HENDERSON and P.N.T. UNWIN, Nature (London), 257, 28 (1975).CrossRefGoogle Scholar
  7. [7]
    K.R. NAQVI, J. GONZALEZ-RODRIGUEZ, R.J. CHERRY and D. CHAP-MAN, Nature New Biol. (London) 245, 249 (1973).CrossRefGoogle Scholar
  8. [8]
    G.L. NICOLSON, Biochim. Biophys. Acta, 457, 57 (1976).PubMedCrossRefGoogle Scholar
  9. [9]
    J. STEIM, M. TOURTELLOTTE, J.C. REINERT, R.N. McELHANEY and R.L. RADAR, Proc. Natl. Acad. Sci. U.S.A., 63, 104 (1969).PubMedCrossRefPubMedCentralGoogle Scholar
  10. [10]
    D. CHAPMAN and J. URBINA, FEBS Letts., 12, 169 (1971).CrossRefGoogle Scholar
  11. [11]
    M.B. JACKSON and J.M. STURTEVANT, Biochemistry, 17, 911 (1978).PubMedCrossRefGoogle Scholar
  12. [12]
    J.E. ROTHMAN and J. LENARD, Science, 195, 743 (1977).CrossRefGoogle Scholar
  13. [13]
    M. S. Bretscher, Science, 181, 622 (1973).PubMedCrossRefGoogle Scholar
  14. [14]
    J.A.F. OP DEN KAMP, Annu. Rev. Biochem., 48, 47 (1979).CrossRefGoogle Scholar
  15. [15]
    H.G. KHORANA, G.F. GERBER, W.C. HERLHIGY, C.P. GRAY, R.J. ANDEREGG, K. NIHEI and K. BIEMANN, Proc. Natl. Acad. Sci. USA., 76, 5046 (1979).PubMedCrossRefPubMedCentralGoogle Scholar
  16. [16]
    H. SUSI, S.N. TIMASHEFF and L. STEVENS, J. Biol. Chem., 242, 5460 (1967).PubMedGoogle Scholar
  17. [17]
    S.N. TIMASHEFF, H. SUSI and L. STEVENS, J. Biol. Chem., 242, 5467 (1967).PubMedGoogle Scholar
  18. [18]
    M. CORTIJO, A. ALONSO, J.C. GOMEZ-FERNANDEZ and D. CHAPMAN, J. Mol. Biol., 157, 597 (1982).PubMedCrossRefGoogle Scholar
  19. [19]
    B.K. JAP, M.F. MAESTRE, S.B. HAYWARD and R.M. GLAESER, Biophys. J., 43, 81 (1983).PubMedCrossRefPubMedCentralGoogle Scholar
  20. [20]
    J.P. SEGREST, I. KAHANE, R.L. JACKSON and V.T. MARCHESI, Arch. Biochem. Biophys., 155, 167 (1973).PubMedCrossRefGoogle Scholar
  21. [21]
    M. TOMITA, H. FURTHMAYR and V.T. MARCHESI, Biochemistry, 17, 4756 (1978).PubMedCrossRefGoogle Scholar
  22. [22]
    R. MENDELSOHN, R.A. DLUHY, T. CRAWFORD and H.H. MANTSCH, Biochemistry, 23, 1498 (1984).PubMedCrossRefGoogle Scholar
  23. [23]
    T.H. SCHULTE and V.T. MARCHESI, Biochemistry, 18, 275 (1979).PubMedCrossRefGoogle Scholar
  24. [24]
    H. MICHEL, Trends Biochem. Sci., 8, 56 (1983).CrossRefGoogle Scholar
  25. [25]
    R.M. GARAVITO and J.P. ROSENBUSCH, J. Cell. Biol., 86, 327 (1980).PubMedCrossRefGoogle Scholar
  26. [26]
    H. MICHEL, J. Mol. Biol., 158, 567 (1982).PubMedCrossRefGoogle Scholar
  27. [27]
    L. DUX and A. MARTONOSI, J. Biol. Chem., 258, 11896 (1983).PubMedGoogle Scholar
  28. [28]
    M.W. KLYMKOWSKY and R.M. STROUD, J. Mol. Biol., 128, 319 (1979).PubMedCrossRefGoogle Scholar
  29. [29]
    B.D. LADBROOKE, R.M. WILLIAMS and D. CHAPMAN, Biochim. Biophys. Acta, 150, 333 (1968).PubMedCrossRefGoogle Scholar
  30. [30]
    B.D. LADBROOKE, R.M. WILLIAMS and D. CHAPMAN, Biochim. Biophys. Acta, 150, 333 (1968).PubMedCrossRefGoogle Scholar
  31. [31]
    R.A. CONE, Nature (London), 236, 39 (1972).CrossRefGoogle Scholar
  32. [32]
    E.F. ZWICKER and L.I. GROSSWEINER, J. Phys. Chem., 67, 549 (1963).CrossRefGoogle Scholar
  33. [33]
    V. KASCHE and L. LINDQUIST, Photochem. Photobiol., 4, 923 (1965).CrossRefGoogle Scholar
  34. [34]
    P.B. GARLAND and C.H. MOORE, Biochem. J., 183, 561 (1979).PubMedPubMedCentralGoogle Scholar
  35. [35]
    R.J. CHERRY, A. COGOLI, M. OPPLIGER, G. SCHNEIDER and G. SEMENZA, Biochemistry, 15, 3653 (1976).PubMedCrossRefGoogle Scholar
  36. [36]
    W. HOFFMAN, M. SARZALA and D. CHAPMAN, Proc. Natl. Acad. Sci. USA, 76, 3860 (1979).CrossRefGoogle Scholar
  37. [37]
    E. K. MURRAY, C. J. RESTALL and D. CHAPMAN, Biochim. Biophys. Acta, 732, 347 (1983).PubMedCrossRefGoogle Scholar
  38. [38]
    C. RESTALL, E. MURRAY, W. DALE and D. CHAPMAN, Biochemistry, 23, 6765 (1984).PubMedCrossRefGoogle Scholar
  39. [39]
    P.G. SAFFMAN and M. DELBRUCK, Proc. Natl. Acad. Sci. USA, 72, 3111 (1975).PubMedCrossRefPubMedCentralGoogle Scholar
  40. [40]
    R.J. CHERRY and R.E. GODFREY, Biophys. J., 36, 257 (1981).PubMedCrossRefPubMedCentralGoogle Scholar
  41. [41]
    M.P. HEYN, R.J. CHERRY and N.A. DENCHER, Biochemistry, 20, 840 (1981).PubMedCrossRefGoogle Scholar
  42. [42]
    R. PETERS and R.J. CHERRY, Proc. Natl. Acad. Sci. USA, 79, 4317 (1982).PubMedCrossRefPubMedCentralGoogle Scholar
  43. [43]
    D. CHAPMAN and N.J. SALSBURY, Trans. Faraday Soc., 62, 2607 (1966).CrossRefGoogle Scholar
  44. [44]
    Z. VEKSLI, N. SALSBURY and D. CHAPMAN, Biochim. Biophys. Acta, 183, 434 (1969).PubMedCrossRefGoogle Scholar
  45. [44]
    E. OLDFIELD, D. CHAPMAN and W. DRBYSHIRE, FEBS Lett., 16, 102 (1971).CrossRefGoogle Scholar
  46. [46]
    A. SEELIG and J. SEELIG, Biochemistry, 13, 4839 (1974).PubMedCrossRefGoogle Scholar
  47. [47]
    J. SEELIG and A. SEELIG, Q. Rev. Biophys., 13, 19 (1980).PubMedCrossRefGoogle Scholar
  48. [48]
    M. PHILLIPS, R. WILLIAMS and D. CHAPMAN, Chem. Phys. Lipids, 3, 234 (1969).CrossRefGoogle Scholar
  49. [49]
    W.L. HUBBELL and H.M. McCONNELL, J.Am. Chem. Soc., 93, 314 (1971).PubMedCrossRefGoogle Scholar
  50. [50]
    R. SKARJUNE and E. OLDFIELD, Biochemistry, 21, 3154 (1982).PubMedCrossRefGoogle Scholar
  51. [51]
    F.I. PRESTI, R.J. PACE and S.I. CHEN, Biochemistry, 21, 3831 (1982).PubMedCrossRefGoogle Scholar
  52. [52]
    R.A. DEMEL and B. de KRUIJFF, Biochim. Biophys. Acta, 457, 109 (1935).CrossRefGoogle Scholar
  53. [53]
    M.G. TAYLOR and I.C.P. SMITH, Biochim. Biophys. Acta, 599, 140 (1980).PubMedCrossRefGoogle Scholar
  54. [54]
    D. CHAPMAN, N. OWEN, M. PHILLIPS and D. WALKER, Biochim. Biophys. Acta, 183, 458 (1969).PubMedCrossRefGoogle Scholar
  55. [55]
    D. CHAPMAN and S.A. PENKET, Nature (London), 211, 1304 (1966).CrossRefGoogle Scholar
  56. [56]
    G. STOCKTON, K. JOHNSON, K. BUTLER, A. TULLOCH, Y. BOULANGER, I. SMITH, J. DAVIS, and M. BLOOM, Nature (London), 269, 267 (1977).CrossRefGoogle Scholar
  57. [57]
    I.M. ASHER and I.W. LEVIN, Biochim. Biophys. Acta, 468, 63 (1977).PubMedCrossRefGoogle Scholar
  58. [58]
    D.G. CAMERON, H.L. CASAL and H.H. MANTSCH, Biochemistry, 19, 3665 (1980).PubMedCrossRefGoogle Scholar
  59. [59]
    M. CORTIJO and D. CHAPMAN, FEBS Letts., 131, 245 (1981).CrossRefGoogle Scholar
  60. [60]
    H. MANTSCH, A. MARTIN and D. CAMERON, Biochemistry, 20, 3138 (1981).PubMedCrossRefGoogle Scholar
  61. [61]
    J.H. CROWE, L.M. CROWE and D. CHAPMAN, Science, 223, 701 (1984).PubMedCrossRefGoogle Scholar
  62. [62]
    R.B. GENNIS and A. JONAS, Annu. Rev. Biophys. Bioeng., 6, 195 (1977).PubMedCrossRefGoogle Scholar
  63. [63]
    D. CHAPMAN, J.C. GOMEZ-FERNANDEZ and F.M. GONI, FEBS Letts., 98, 211 (1979).CrossRefGoogle Scholar
  64. [64]
    P.C. JOST, O.H. GRIFFITH, R.A. CAPALDI and G. VANDERKOOI, Proc. Natl. Acad. Sci. USA, 70, 480 (1973).PubMedCrossRefPubMedCentralGoogle Scholar
  65. [65]
    E. OLDFIELD, R. GILMORE, M. GLASER, H.S. GUTOWSKY, J.C. HSUNG, S.Y. KANG, T.E. KING, M.D. MEADOWS and D.M. RICE, Proc. Natl. Acad. Sci. USA, 75, 4657 (1978).PubMedCrossRefPubMedCentralGoogle Scholar
  66. [66]
    D.M. RICE, M.D. MEADOWS, A.O. SCHEINMAN, F.-M. GONI, J.C. GOMEZFERNANDEZ, M.A. MOSCARELLO, D. CHAPMAN and E. OLDFIELD, Biochemistry, 18, 5893 (1979).PubMedGoogle Scholar
  67. [67]
    M.R. PADDY, F.W. DAHLQUIST, J.H. DAVIS and M. BLOOM, Biochemistry, 20, 3152 (1981).PubMedCrossRefGoogle Scholar
  68. [68]
    S.Y. KANG, H.R.S. GUTOWSKY, J.C. HSUNG, R. JACOBS, T.E. KING, D.M. RICE and E. OLDFIELD, Biochemistry, 18, 3257 (1979).PubMedCrossRefGoogle Scholar
  69. [69]
    H.U. GALLY, G. PLUSCHKE, P. OVERATH and J. SEELIG, Biochemistry, 19, 1638 (1980).PubMedCrossRefGoogle Scholar
  70. [70]
    M.R. PADDY and F.W. DAHLQUIST, Biophys J., 37, 110 (1982).PubMedCrossRefPubMedCentralGoogle Scholar
  71. [71]
    R.A. DLUHY, R. MENDELSOHN, H.L. CASAL and H.H. MANTSCH, Biochemistry, 22, 1170 (1983).PubMedCrossRefGoogle Scholar
  72. [72]
    D.C. LEE, A.A. DURRANI and D. CHAPMAN, Biochim. Biophys. Acta, 769, 49 (1984).PubMedCrossRefGoogle Scholar
  73. [73]
    C. TANFORD, The Hydrophobic Effect. John Wiley and Sons, New York (1984) (2nd edition).Google Scholar
  74. [74]
    J.H. CROWE, L.M. CROWE and S.A. JACKSON, Arch. Biochem. Biophys., 220, 477 (1983).PubMedCrossRefGoogle Scholar
  75. [75]
    J.H. CROWE and L.M. CROWE, in Biological Membranes, D. CHAPMAN (Editor), Academic Press, London, (1984) Vol. 5, pp. 57–102.Google Scholar
  76. [76]
    L.M. CROWE and J.H. CROWE, Arch. Biochem. Biophys., 217, 582 (1982).PubMedCrossRefGoogle Scholar
  77. [77]
    K.A.C. MADIN and J.H. CROWE, J. Exp. Zool., 193, 335 (1975).CrossRefGoogle Scholar
  78. [78]
    J.S. CLEGG, J. Exp. Biol., 41, 879 (1964).PubMedGoogle Scholar
  79. [79]
    J.H. CROWE and J.S. CLEGG, Anhydrobiosis, Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pa. (1973).Google Scholar
  80. [80]
    L.M. CROWE, R. MOURADIAN, J.H. CROWE, S.A. JACKSON and C. WOMERSLEY, Biochim. Biophys. Acta, 769, 141 (1984).PubMedCrossRefGoogle Scholar
  81. [81]
    J.H. CROWE, M.A. WHITTAM, D. CHAPMAN and L.M. CROWE, Biochim. Biophys. Acta, 769, 151 (1984).PubMedCrossRefGoogle Scholar
  82. [82]
    P. CHAKRABARTI and M.G. KHORANA, Biochemistry, 14, 5021 (1975).PubMedCrossRefGoogle Scholar
  83. [83]
    H.H. HUB, B. HUPFER, H. KOCH and H. RINGSDORF, Angew. Chem. Int. Ed. Engl., 19, 938 (1980).PubMedCrossRefGoogle Scholar
  84. [84]
    D.S. JOHNSTON, S. SANGHERA, M. PONS and D. CHAPMAN, Biochim. Biophys. Acta, 602, 57 (1980).PubMedCrossRefGoogle Scholar
  85. [85]
    W. STOFFEL, K. P. SALM and M. MÜLLER, Hoppe SeylerZ. Physiol.Chem., 363, 19 (1982).PubMedCrossRefGoogle Scholar
  86. [86]
    D.S. JOHNSTON, L.R. McLEAN, M.A. WHITTAM, A.D. CLARK and D. CHAPMAN, Biochemistry, 22, 3194 (1983).CrossRefGoogle Scholar
  87. [87]
    J.A. HAYWARD and D. CHAPMAN, Biomaterials, 5, 135 (1984).PubMedCrossRefGoogle Scholar
  88. [88]
    J. LEAVER, A. ALONSO, A.A. DURRANI and D. CHAPMAN, Biochim. Biophys. Acta, 732, 210 (1983).CrossRefGoogle Scholar
  89. [89]
    R.H. BAUGHMAN and K.C. YEE, Macromol. Rev., 13, 219 (1978).CrossRefGoogle Scholar
  90. [90]
    M. PONS, C. VILLAVERDE and D. CHAPMAN, Biochim. Biophys. Acta, 730, 306 (1983).CrossRefGoogle Scholar
  91. [91]
    J. LEAVER, A. ALONSO, A.A. DURRANI and D. CHAPMAN, Biochim. Biophys. Acta, 727, 327 (1983).PubMedCrossRefGoogle Scholar
  92. [92]
    O. ALBRECHT, D.S. JOHNSTON and D. CHAPMAN, Biochim. Biophys. Acta, 687, 165 (1982).PubMedCrossRefGoogle Scholar
  93. [93]
    L.R. McLEAN, A.A. DURRANI, M.A. WHITTAM, D.S. JOHNSTON and D. CHAPMAN, Thin Solid Films, 99, 127 (1983).CrossRefGoogle Scholar
  94. [94]
    R.L. JULIANO, M.J. HSU, D. PETERSON, S.L. REGEN and A. SINGH, Exp. Cell Res., 146, 422 (1983).PubMedCrossRefGoogle Scholar
  95. [95]
    R.F.A. ZWAAL and H.C. HEMKER, Haemostasis, 11, 12 (1982).PubMedGoogle Scholar
  96. [96]
    T.M.S. CHANG, Trans. Am. Soc. Artif Inter. Organs, 26, 354 (1980).Google Scholar
  97. [97]
    L. DJORDJEVICH and I.F. MILLER, Exp. Hematol., 8, 584 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James A. Hayward
    • 1
  • David C. Lee
    • 1
  • Francesco Castelli
    • 1
  • Dennis Chapman
    • 1
  1. 1.Department of Biochemistry and ChemistryRoyal Free Hospital School of Medicine University of LondonLondonUK

Personalised recommendations