Advertisement

Thermodynamic Properties of the Ion-Channels in the Nerve-Membrane

  • Franco Conti

Abstract

The cell membrane is normally required to accomplish many different transport functions at the same time. There is now abundant evidence that most of these activities employ a relatively low density of physically distinct and non-interacting pathways, provided by specific proteins embedded in a common lipid matrix and structured as hydrophylic pores which open or close as a result of conformational fluctuations modulated by the membrane environment. Most experiments supporting the above notion have been performed on electrically excitable membranes where voltage-gated ion-channels provide the simplest molecular interpretation of the classic HODGKIN-HUXLEY mathematical description of nervous conduction [1]. However, hydrophylic pores are likely to be a general type of structure for the transport of water-soluble compounds across a biological membrane. There is evidence, indeed, that porous structures underlie the passive transport of ions and non-electrolytes between contacting cells [2] and between individual cells and their environment [3]. The experiments demonstrating the discrete nature of nerve membrane permeabilities are those which provide estimates of channel densities and/or of the electrical conductance of a single open channel. Four different experimental approaches have been used: binding studies, gating current measurements, currents fluctuation analysis, and single channel recordings.

Keywords

Sodium Channel Channel State Single Channel Closed State Potassium Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.L. HODGKIN and A.F. HUXLEY, J. Physiol., 117, 500 (1952).PubMedGoogle Scholar
  2. [2]
    W.R. LOEWENSTEIN, I. KANNO and S.J. SOCOLAR, Nature (London), 274, 133 (1978).CrossRefGoogle Scholar
  3. [3]
    R. BENZ, K. JANKO, W. BOOS and P. LAUGER, Biochim. Biophys. Acta, 511, 305 (1978).PubMedCrossRefGoogle Scholar
  4. [4]
    W.S. AGNEW, Annu. Rev. Physiol., 46, 517 (1984).PubMedCrossRefGoogle Scholar
  5. [5]
    J.A. MILLER, W.S. AGNEW and S.R. LEVINSON, Biochemistry, 22, 462 (1983).PubMedCrossRefGoogle Scholar
  6. [6]
    R.L. BARCHI, J. Neurochem., 40, 1377 (1983).PubMedCrossRefGoogle Scholar
  7. [7]
    R.P. HARTSHORNE, D.J. MESSNER, J.C. COPPERSMITH and W.A. CATTERALL, J. Biol. Chem., 257, 13888 (1982).PubMedGoogle Scholar
  8. [8]
    J.A. TALVESHEIMO, M.M. TAMKUN and W.A, CATTERALL, J. Biol. Chem., 257, 11868 (1982).Google Scholar
  9. [9]
    R.L. ROSENBERG, S.A. TOMIKO and W.S. AGNEW, Proc. Natl. Acad. Sci. USA, 81, 1239 (1984).PubMedCrossRefGoogle Scholar
  10. [10]
    M. NODA, S. SHIMIZU, T. TANABE, T. TAKAI, T. Kayano., T. IKEDA, H. TAKAHASHI, H. WAKAYAMA, Y. KANAOKA, N. MINAMINO, K. KANGAWA, H. MATSUO, A.M. RAFTERY, T. HIROSE, S. INAYAMA, H. HAYASHIDA, T. MIYATA, S. NUMA, Nature (London), 312, 121 (1984).CrossRefGoogle Scholar
  11. [11]
    J.W. MOORE, T. NARAHASHI and T.I. SHAW, J. Physiol., 188, 99 (1967).PubMedGoogle Scholar
  12. [12]
    J.M. RITCHIE and R.B. ROGART, Rev. Physiol. Biochem. Pharmacol., 79, 1 (1977).PubMedCrossRefGoogle Scholar
  13. [13]
    G.R. STRICHARTZ, R.B. ROGART and J.M. RITCHIE, J. Membr. Biol., 48, 357 (1979).PubMedCrossRefGoogle Scholar
  14. [14]
    C.R. ANDERSON and C.F. STEVENS, J. Physiol., 235, 655 (1973).PubMedGoogle Scholar
  15. [15]
    W. ALMERS, Rev. Physiol. Biochem. Pharmacol., 82, 97 (1978).Google Scholar
  16. [16]
    C.M. ARMSTRONG and F. BEZANILLA, Nature (London), 242, 459 (1973).CrossRefGoogle Scholar
  17. [17]
    R.D. KEYNES and E. ROJAS, J. Physiol., 239, 393 (1974).PubMedGoogle Scholar
  18. [18]
    W.F. GILLY and C.M. ARMSTRONG, Biophys. J., 29, 485 (1980).PubMedCrossRefGoogle Scholar
  19. [19]
    F. BEZANILLA, M.M. WHITE and R.E. TAYLOR, Nature (London), 296, 657 (1982).CrossRefGoogle Scholar
  20. [20]
    M. LAX, Rev. Mod. Phys., 32, 25 (1960).CrossRefGoogle Scholar
  21. [21]
    B. KATZ and R. MILEDI, Nature (London), 225, 962 (1970).CrossRefGoogle Scholar
  22. [22]
    P. LAUGER, Science, N.Y., 178, 24 (1972).CrossRefGoogle Scholar
  23. [23]
    F. CONTI and E. WANKE, Q. Rev. Biophys., 8, 451 (1975).PubMedCrossRefGoogle Scholar
  24. [24]
    J.S. BENDAT and A.G. PIERSOL, Random Data: Analysis and Measurement Procedures, Wiley, New York (1971).Google Scholar
  25. [25]
    F. CONTI, Current Topics in Membranes and Transport, 22, 371 (1984).Google Scholar
  26. [26]
    E. NEHER and B. SACKMANN, Nature (London), 260, 799 (1976).CrossRefGoogle Scholar
  27. [27]
    O.P. HAMILL, A. MARTY, E. NEHER, B. SACKMANN and F.J. SIGWORTH, Pflug. Arch. Ges. Physiol., 391, 85 (1981).CrossRefGoogle Scholar
  28. [28]
    F. CONTI and E. NEHER, Nature (London), 285, 140 (1980).CrossRefGoogle Scholar
  29. [29]
    F.J. SIGWORTH and E. NEHER, Nature (London), 287, 447 (1980).CrossRefGoogle Scholar
  30. [30]
    R.W. ALDRICH, D.P. COREY and C.F. STEVENS, Nature (London), 306, 436 (1983).CrossRefGoogle Scholar
  31. [31]
    J. PATLAK and R. HORN, J. Gen. Physiol., 79, 333 (1982).PubMedCrossRefGoogle Scholar
  32. [32]
    R. HORN and C.A. VANDENBERG, J. Gen Physiol., 84, 505 (1984).PubMedCrossRefGoogle Scholar
  33. [33]
    T.L. HILL, An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, Mass. (1960).Google Scholar
  34. [34]
    S. GLASSTONE, K.J. LAIDLER and H. EYRING, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  35. [35]
    C.M. ARMSTRONG and F. BEZANILLA, J. Gen. Physiol., 70, 567 (1977).PubMedCrossRefGoogle Scholar
  36. [36]
    J.E. KIMURA and H. MEVES, J. Physiol., 289, 479 (1979).PubMedGoogle Scholar
  37. [37]
    C.M. ARMSTRONG and W.F. GILLY, J. Gen. Physiol., 74, 691 (1979).PubMedCrossRefGoogle Scholar
  38. [38]
    R.D. KEYNES, Proc. R. Soc. Lond., 220, 1 (1983).PubMedCrossRefGoogle Scholar
  39. [39]
    J.V. HENDERSON and D.L. GILBERT, Nature (London), 258, 351 (1975).CrossRefGoogle Scholar
  40. [40]
    F. CONTI, R. FIORAVANTI, J.R. SEGAL and W. STUHMER, J. Membr. Biol., 69, 23 (1982).PubMedCrossRefGoogle Scholar
  41. [41]
    F. CONTI, R. FIORAVANTI, J.R. SEGAL and W. STÜHMER, J. Membr. Biol., 69, 35 (1982).PubMedCrossRefGoogle Scholar
  42. [42]
    F. CONTI, I. INOUE, F. KUKITA and W. STÜHMER, Eur. Biophys. J., 11, 137 (1984).PubMedCrossRefGoogle Scholar
  43. [43]
    K.T. WANN and A.G. MACDONALD, Comp. Biochem. Physiol., 66A, 1 (1980).CrossRefGoogle Scholar
  44. [44]
    R. BENZ, F. CONTI and R. FIORAVANTI, Eur. Biophys. J., 11, 51 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Franco Conti
    • 1
  1. 1.Istituto di Cibernetica e BiofisicaConsiglio Nazionale delle RicercheGenovaItaly

Personalised recommendations