Advertisement

Chemiosmotic Coupling in Energy Transduction

  • B. Andrea Melandri

Abstract

The role of ion gradients in the storage of the metabolic energy of cells had not been fully recognized until, in his classical proposal of chemiosmotic energy transduction, P. MITCHELL advanced the idea that the formation, or the dissipation of ionic gradients could be reversibly coupled to group transfer reactions [1–4]. This idea brought about a complete revolution in our concepts of bioenergetics, since ionic gradients were no longer a relatively indirect aspect of transport problems, but rather the principal issue in the study of the mechanism of energy transduction.

Keywords

Force Ratio Electron Transfer Chain Reaction Center Complex Coupling Unit Coupling Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. MITCHELL, Biochem. Soc. Trans., 4, 399 (1976).PubMedGoogle Scholar
  2. [2]
    P. MITCHELL, Eur. J. Biochem.,95, 1 (1979).PubMedCrossRefGoogle Scholar
  3. [3]
    D.G. NICHOLLS, Bioenergetics, Academic Press, London, (1982).Google Scholar
  4. [4]
    D.G. NICHOLLS, in Bioenergetics, L. Ernster (Editor) Elsevier, Amsterdam, (1984), pp. 29–48.Google Scholar
  5. [5]
    H. ROTTENBERG, Biochim. Biophys. Acta, 549, 225 (1979).PubMedGoogle Scholar
  6. [6]
    D.R. ORT and B.A. MELANDRI, in Photosynthesis. Energy Conversion in Plants and Bacteria, GOVINDJEE (Editor), Academic Press, New York, (1982), pp. 537–587;Google Scholar
  7. [7]
    A. BACCARINI-MELANDRI, R. CASADIO and B.A. MELANDRI, Curr. Top. Bioenerg., 12, 197 (1981).Google Scholar
  8. [8]
    P. MITCHELL and J. MOYLE, Biochem. J., 104, 588 (1967).PubMedGoogle Scholar
  9. [9]
    D.G. NICHOLLSEur. J. Biochem., 49, 573 (1974).PubMedCrossRefGoogle Scholar
  10. [10]
    R. SCHMIDT and W. JUNGE, Proc. 3rd. Int. Congr. Photosynthesis (1974), pp. 821–830.Google Scholar
  11. [11]
    J.B. JACKSONFEBS Lett., 139, 139 (1982).Google Scholar
  12. [12]
    E.A. LIEBERMAN and V.P. TOPALY, Biochim. Biophys. Acta, 163, 125 (1968).CrossRefGoogle Scholar
  13. [13]
    P. MITCHELL, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK. (1966).Google Scholar
  14. [14]
    B. RAYNAFARJE, A. ALEXANDRE, P. DAVIES and A. LEHNINGER, Proc. Natl. Acad. Sci. U.S.A., 79, 7218 (1982).CrossRefGoogle Scholar
  15. [15]
    S. PAPA, Biochim. Biophys. Acta, 456, 39 (1976).Google Scholar
  16. [16]
    E. SCHLODDER, P. GRABER and H.T. WITT, in Electron Transport and Phosphorylation, J. BARBER (Editor), Elsevier, Amsterdam, (1982) pp. 105–175.Google Scholar
  17. [17]
    J.D. MILLS and P. MITCHELL, Biochim. Biophys. Acta, 764, 93 (1982).Google Scholar
  18. [18]
    R.J.P. WILLIAMS, J. Theor. Biol., 1, 1 (1961).PubMedCrossRefGoogle Scholar
  19. [19]
    R.J.P. WILLIAMS, J. Theor. Biol., 3, 209 (1962).CrossRefGoogle Scholar
  20. [20]
    R.A. DILLEY, L.J. PROCHASKA, G.M. BAKER, N.E. TANDY and P.A. MILLNER, Curr. Top. Membr. Tansp., 16, 345 (1982).CrossRefGoogle Scholar
  21. [21]
    M. WIKSTROEM and M. SARASTE in Bioenergetics, L. ERNSTER (Editor). Elsevier, Amsterdam, (1984), pp. 49–94.Google Scholar
  22. [22]
    H. SCHNEIDER, J.J. LEMASTER, M. HOECHLI and C. HACKENBROCK, J. Biol. Chem., 225, 3748 (1980).Google Scholar
  23. [23]
    G. LENAZ, A. DE SANTIS and E. BERTOLI in Coenzyme Q, G. LENAZ (Editor), Wiley, London, (1985), pp. 165–199.Google Scholar
  24. [24]
    J.H. HOCHMAN, M. SCHINDLER, J.G. LEE and S. FERGUSON-MILLER, Proc. Natl. Acad. Sci., USA, 79, 6866 (1982).Google Scholar
  25. [25]
    J.S. RIESKEBiochim. Biophys. Acta, 456, 195 (1976).PubMedGoogle Scholar
  26. [26]
    M. WIKSTROEM, K. KRAB and M. SARASTE, Annu. Rev. Biochem., 50, 623 (1981).CrossRefGoogle Scholar
  27. [27]
    G. HAUSKA, E. HURT, N. GABELLINI and W. LOCKAU, Biochim. Biophys. Acta, 726 97 (1983).PubMedGoogle Scholar
  28. [28]
    R.A. CAPALDI, Biochim. Biophys. Acta, 694, 291 (1982).PubMedGoogle Scholar
  29. [29]
    P. MITCHELLJ. Theor. Biol., 62 327 (1976).PubMedCrossRefGoogle Scholar
  30. [30]
    A.R. CROFTS, S.W. MEINHARDT, K.R. JONES and M. SNOZZI, Biochim. Biophys. Acta, 723, 202 (1983).PubMedCrossRefGoogle Scholar
  31. [31]
    M. WIKSTROEM and K. KRAB, Curr. Top. Bioenerg., 10, 51 (1980).Google Scholar
  32. [32]
    A. AZZI, Biochim. Bipohys. Acta, 594, 231 (1980).Google Scholar
  33. [33]
    B.G. MALMSTROM, Annu. Rev. Biochem., 51, 21 (1982).PubMedCrossRefGoogle Scholar
  34. [34]
    M. WIKSTROEM, K. KRAB and M. SARASTE, Cytochrome oxidase. A synthesis, Academic Press, New York, (1982).Google Scholar
  35. [35]
    B.A. MELANDRI and G. VENTUROLI in Bioenergetics, L. ERNSTER (Editor), Elsevier, Amsterdam, (1984), pp. 95–148.Google Scholar
  36. [36]
    W.A. CRAMER and A.R. CROFTS in Photosynthesis. Energy Conversion in Plants and Bacteria, GOVINDJEE (Editor), Academic Press, New York, (1982), pp. 387–466.Google Scholar
  37. [37]
    K. SAUER, Annu. Rev. Phys. Chem., 30, 155 (1979).CrossRefGoogle Scholar
  38. [38]
    M.Y. OKAMURA, G. FEHER and N. NELSON in Photosynthesis. Energy Conversion in Plants and Bacteria, GOVINDJEE, (Editor) Academic Press, New York, (1983), pp. 195–264.Google Scholar
  39. [39]
    W.W. PARSON and B. KE in Photosynthesis. Energy Conversion in Plants and Bacteria, GOVINDJEE, (Editor) Academic Press, New York, (1982), pp. 338385.Google Scholar
  40. [40]
    C.A. WRAIGHT in Function of Quinones in Energy Conserving System, B. TRUMPOVER (Editor), Academic Press, New York, (1981), pp. 181–188.Google Scholar
  41. [41]
    H.T. WITT, Biochim. Biophys. Acta, 505, 355 (1979).PubMedGoogle Scholar
  42. [42]
    E. ODERMATT, M. SNOZZI and R. BACHOFEN, Biochim. Biophys. Acta, 460, 273 (1977).CrossRefGoogle Scholar
  43. [43]
    M. SCHOENFELD, M. MONTAL and G. FEHER, Proc. Natl. Acad. Sci. U.S.A., 76, 6351 (1979).CrossRefGoogle Scholar
  44. [44]
    N. SHAVIT, Annu. Rev. Biochem., 49, 111 (1980).PubMedCrossRefGoogle Scholar
  45. [45]
    L.M. AMZEL and P.L. PEDERSEN, Annu. Rev. Biochem., 52, 801 (1983).PubMedCrossRefGoogle Scholar
  46. [46]
    M. KANAZAWA and M. FUTAI, Ann. N.Y. Acad. Sci., 402, 45 (1982).PubMedCrossRefGoogle Scholar
  47. [47]
    J.E. WALKER, M. SARASTE and N.J. GAY, Biochim. Biophys. Acta, 768, 164 (1984).PubMedGoogle Scholar
  48. [48]
    Y. KAGAWA, in Bioenergetics, L. ERNSTER (Editor), Elsevier, Amsterdam, (1984), pp. 149–186).Google Scholar
  49. [49]
    P. MITCHELL, FEBS Lett., 43, 189 (1974).PubMedCrossRefGoogle Scholar
  50. [50]
    R.L. CROSS, Annu. Rev. Biochem., 50, 681 (1981).PubMedCrossRefGoogle Scholar
  51. [51]
    W. JUNGE and J.B. JACKSON, in Photosynthesis, Energy Conversion in Plants and Bacteria, GOVINDJEE (Editor) Academic Press, New York, (1982), pp. 589–646.Google Scholar
  52. [52]
    G.F. AZZONE, D. PIETROBON and M. ZORATTI, Curr. Top. Bioenerg., 13, 1 (1984).Google Scholar
  53. [53]
    B.A. MELANDRI, in Bioelectrochemistry I, G. MILAZZO and M. BLANK (Editors), Plenum, New York, (1983), pp. 115–142.Google Scholar
  54. [54]
    G. HAUSKA and A. TREBST, Curr. Top. Bioenerg., 6, 151 (1977).Google Scholar
  55. [55]
    M. DEGLI ESPOSTI, E.M.M. MEIER, J. TIMONEDA and G. LENAZ, Biochim. Biophys. Acta, 725, 349 (1983).PubMedCrossRefGoogle Scholar
  56. [56]
    E. HURT, N. GABELLINI, Y. SHAHAK, W. LOCKAU and G. HAUSKA, Arch. Biochem. Biophys., 225, 879 (1983).PubMedCrossRefGoogle Scholar
  57. [57]
    R.P. CASEY, P.S. O’SHEA, J.B. CHAPPELL and A. AZZI, Biochim. Biophys. Acta, 765, 30 (1984).Google Scholar
  58. [58]
    E. SIGEL and E. CARAFOLI, Eur. J. Biochem.,111, 299 (1980).PubMedCrossRefGoogle Scholar
  59. [59]
    P. MITCHELL and J. MOYLE, Eur. J. Biochem., 4, 530 (1968).PubMedCrossRefGoogle Scholar
  60. [60]
    C. CARMELI, FEBS Lett., 7, 297 (1970).PubMedCrossRefGoogle Scholar
  61. [61]
    R.E. McCARTY and C. CARMELI in Photosynthesis. Energy Conversion in Plants and Bacteria, GOVINDJEE (Editor) Academic Press, New York, (1982), pp. 647–695.Google Scholar
  62. [62]
    S.R. CAPLAN Curr. Top. Bioenerg. 4, 1 (1971).Google Scholar
  63. [63]
    H.V. WESTERHOFF and K. van DAM, Curr. Top. Bioenerg., 9, 1 (1979).Google Scholar
  64. [64]
    L.T. HILL, Free Energy Transduction in Biology, Academic Press, New York, (1977).Google Scholar
  65. [65]
    A. BACCARINI-MELANDRI, R. CASADIO and B.A. MELANDRI, Eur. J. Biochem., 78, 389 (1977).Google Scholar
  66. [66]
    D. PIETROBON, M. ZORATTI and G.F. AZZONE, Biochim. Biophys. Acta, 723, 317 (1983).PubMedCrossRefGoogle Scholar
  67. [67]
    G.F. AZZONE, S. MASSARI and T. POZZAN, Mol. Cell. Biochem., 17, 101 (1977).PubMedCrossRefGoogle Scholar
  68. [68]
    D.F. WILSON and N.G. FORMAN, Biochemistry, 21, 1438 (1982).PubMedCrossRefGoogle Scholar
  69. [69]
    G.F. AZZONE, T. POZZAN, E. VIOLA and P. ARSLAN, Biochim. Biophys. Acta, 501, 317 (1978).PubMedCrossRefGoogle Scholar
  70. [70]
    C. GIERSCH, U. HEBER, Y. KABAYASHI, Y. INOUE, K. SHIBATA and M. HELDT, Biochim. Biophys. Acta,590, 59 (1980).PubMedCrossRefGoogle Scholar
  71. [71]
    G.F. AZZONE, T. POZZAN and S. MASSARI, Biochim. Biophys. Acta, 501, 307 (1978).PubMedCrossRefGoogle Scholar
  72. [72]
    H.V. WESTERHOFF, A.L.M. SIMONETTI and K. DAM, Biochem. J. 200, 193 (1981).PubMedGoogle Scholar
  73. [73]
    A.A. GUFFANTI, R.F. BORNSTEIN and T.A. KRULWICH, Biochim. Biophys. Acta, 635, 619 (1981).PubMedCrossRefGoogle Scholar
  74. [74]
    S.J. FERGUSON and M.C. SORGATO, Annu. Rev. Biochem., 51, 185 (1982).PubMedCrossRefGoogle Scholar
  75. [75]
    H. WOELDERS, W.J. van der ZANDE, A.A.S. COLEN, R.J.A. WANDERS and K. van DAM, FEBS Lett., (1985) in press.Google Scholar
  76. [76]
    A. PORTIS and R.E. Mc CARTY, J. Biol. Chem., 251, 1610 (1976).PubMedGoogle Scholar
  77. [77]
    F. HARAUX, C. SIGALAT, A. MOREAU and Y. de KOUCHOVSKY, Adv. Photosynth. Res., C. SYBESMA (Editor), 2, 293 (1983).Google Scholar
  78. [78]
    M. ZORATTI, D. PIETROBON and G.F. AZZONE, Eur. J. Biochem.,126, 443 (1982).PubMedCrossRefGoogle Scholar
  79. [79]
    G. MANDOLINO, A. DE SANTIS and B.A. MELANDRI, Biochim. Biophys. Acta, 723, 428 (1983).CrossRefGoogle Scholar
  80. [80]
    M.C. SORGATO, G. LIPPE, S. SEREN and S.J. FERGUSON, FEBS Lett., (1985) in press.Google Scholar
  81. [81]
    E. PADAN and H. ROTTENBERG, Eur. J. Biochem., 40, 431 (1973).PubMedCrossRefGoogle Scholar
  82. [82]
    A. HOLIAN and D.F. WILSON, Biochemistry,19, 4213 (1980).PubMedCrossRefGoogle Scholar
  83. [83]
    G. HIND and A.T. JAGENDORF, Proc. Natl. Acad. Sci. U.S.A., 49, 715 (1963).PubMedCrossRefGoogle Scholar
  84. [84]
    A.T. JAGENDORF in Bioenergetics of Photosynthesis,GOVINDJEE (Editor), Academic Press, New York, (1975), pp. 413–492.Google Scholar
  85. [85]
    M. LEISER and Z. GROMET-ELHANANJ. Biol. Chem., 250, 84 (1975).Google Scholar
  86. [86]
    R.D. HORNER and E.N. MOUDRIANAKIS, J. Biol. Chem., 258, 11643 (1983).PubMedGoogle Scholar
  87. [87]
    B.A. íMELANDRI, G. VENTUROLI, A. DE SANTIS and A. BACCARINIMELANDRI, Biochim. Biophys. Acta, 592, 38 (1980).Google Scholar
  88. [88]
    D.R. ORT, R.A. DILLEY and N. GOOD, Biochim. Biophys. Acta, 449, 108 (1976).PubMedCrossRefGoogle Scholar
  89. [89]
    B.A. MELANDRI, A. DE SANTIS, G. VENTUROLI and A. BACCARINIMELANDRI, FEBS Ltt., 95, 130 (1978).CrossRefGoogle Scholar
  90. [90]
    T. GRAAN, S. FLORES and D.R. ORT in Energy Coupling in Photosynthesis, B.R. SELMAN and S. SELMAN-REIMER (Editors), Elsevier, New York, (1981), pp. 25–32.Google Scholar
  91. [91]
    H.V. WESTERHOFF, B.A. MELANDRI, G. VENTUROLI, G.F. AZZONE and D.B. KELL, Biochim. Biophys. Acta, 768, 257 (1984).PubMedGoogle Scholar
  92. [92]
    F. HARAUX and Y. de KOUCHOVSKY (1982), Biochim. Biophys., Acta, 679, 235 (1982).Google Scholar
  93. [93]
    H.V. WESTERHOFF and Y. CHEN, Proc. Natl. Acad. Sci. U.S.A., 82, 3222 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • B. Andrea Melandri
    • 1
  1. 1.Institute of Botany of the UniversityBolognaItaly

Personalised recommendations