Active Ion Transport through Biomembranes

  • S. Roy Caplan


In this chapter we treat active ion transport in biomembranes ranging in complexity from plasma membranes to intact epithelia. Since we deal with studies in the stationary or near-stationary (pseudo-stationary) state, we need to understand the characteristics of stationary states. Accordingly, we may ask what happens if the number of restraints on a system in the steady state is changed. When the maximum number of restraints are applied (all forces being fixed) the stationary state is fully defined, since no more degrees of freedom are left. When no restraints at all are applied (all forces left to float), the system will eventually reach equilibrium. Frequently, however, we impose an intermediate number of restraints. For such situations, PRIGOGINE has shown that in linear systems characterized by ONSAGER symmetry the entropy production assumes the minimal value compatible with the imposed restraints. Thus, if some of the forces are fixed, the remainder will all reach values in the stationary state such that their conjugate fluxes become zero. For example, consider the proton-translocating ATP synthese in mitochondria. If the proton electrochemical potential gradient is clamped, the so-called phosphate potential will reach the steady-state value at which no further phosphorylation occurs (state 4).


Flux Ratio Equivalent Circuit Model Dissipation Function Toad Bladder Minimal Entropy Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [1]
    I. PRIGOGINE, Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, (1961).Google Scholar
  2. [2]
    O. KEDEM, in Membrane Transport and Metabolism, A. KLEINZELLER and A. KOTYK (Editors), Academic Press, New York, (1961), p. 87.Google Scholar
  3. [3]
    T. ROSENBERG, Symp. Soc. Exp. Biol., 8, 27 (1954).Google Scholar
  4. [4]
    A. ESSIG and S.R. CAPLAN, Biophys. J., 8, 1434, (1968).PubMedCrossRefGoogle Scholar
  5. [5]
    H. H. USSING and K. ZERAHN, Acta Physiol. Scand., 23, 110 (1951).PubMedCrossRefGoogle Scholar
  6. [6]
    A. LEAF, J. ANDERSON and L.B. PAGE, J. Gen. Physiol., 41, 657 (1958).PubMedCrossRefGoogle Scholar
  7. [7]
    T. SAITO, P. D. LIEF and A. ESSIG, Am. J. Physiol., 226, 1265 (1974).PubMedGoogle Scholar
  8. [8]
    T. U. L. BIBER and M.L. SANDERS, J. Gen. Physiol., 61, 529 (1973).PubMedCrossRefGoogle Scholar
  9. [9]
    F. L. VIEIRA, S. R. CAPLAN and A. ESSIG, J. Gen. Physiol., 59, 77 (1972).PubMedCrossRefGoogle Scholar
  10. [10]
    M. A. LANG, S. R. CAPLAN and A. ESSIG, Biochim. Biophys. Acta, 464, 571 (1977).PubMedCrossRefGoogle Scholar
  11. [11]
    T. SAITO, A. ESSIG and S.R. CZ, Biochim. Biophys. Acta, 318, 371 (1973).CrossRefGoogle Scholar
  12. [12]
    M. M. CIVAN, O. KEDEM and A. LEAF, Am. J. Physiol., 211, 569 (1966).PubMedGoogle Scholar
  13. [13]
    J. YONATH and M. M. CIVAN, J. Membr. Biol., 5, 366 (1971).CrossRefGoogle Scholar
  14. [14]
    E. H. LARSEN, in Transport Mechanisms in Epithelia, H. H. USSING and N. A. THORN (Editors), Academic Press, New York, (1973), p. 131.Google Scholar
  15. [15]
    C. D. HONG and A. ESSIG, J. Membr. Biol., 28, 121 (1976).PubMedCrossRefGoogle Scholar
  16. [16]
    V. KOEFOED-JOHNSEN and H. H. USSING, Acta Physiol. Scand., 28, 60 (1953).PubMedCrossRefGoogle Scholar
  17. [17]
    H. H. USSING, Acta Physiol. Scand., 19, 43 (1949).CrossRefGoogle Scholar
  18. [18]
    A. L. HODGKIN and R.D. KEYNES, J. Physiol. (London), 128, 61 (1955).PubMedGoogle Scholar
  19. [19]
    O. KEDEM and A. ESSING, J. Gen. Physiol., 48, 1047 (1965).PubMedCrossRefGoogle Scholar
  20. [20]
    P. F. CURRAN, A.E. TAYLOR and A.K. SOLOMON, Biophys. J., 7, 879 (1967).PubMedCrossRefGoogle Scholar
  21. [21]
    M. H. GOTTLIEB and K. SOLLNER, Biophys. J., 8, 515 (1968).PubMedCrossRefGoogle Scholar
  22. [22]
    R. C. DE SOUSA, J. H. LI and A. ESSIG, Nature, London) 231, 44 (1971).CrossRefGoogle Scholar
  23. [23]
    A. ESSIG, O. KEDEM and T. L. HILL, J. Theor. Biol., 13, 72 (1966).CrossRefGoogle Scholar
  24. [24]
    G. M. SHEAN and K. SOLLNER, Ann. N.Y. Acad. Sci., 137, 759 (1966).PubMedCrossRefGoogle Scholar
  25. [25]
    F. M. SNELL, S. SHULMAN, R.P. SPENCER and C. MOOS, Biophysical Principles of Structure and Function, Addison-Wesley, London, (1965), p. 320.Google Scholar
  26. [26]
    A. ESSIG, Biophys. J., 8, 53 (1968).PubMedCrossRefGoogle Scholar
  27. [27]
    E. L. KING and C. ALTMAN, J. Phys. Chem., 60, 1375 (1956).CrossRefGoogle Scholar
  28. [28]
    T. L. HILL, Free Energy Transduction in Biology, Academic Press, New York, (1977).Google Scholar
  29. [29]
    S. R. CAPLAN, Proc. Natl. Acad. Sci. USA, 78, 4314 (1981).PubMedCrossRefGoogle Scholar
  30. [30]
    A. ESSING and S. R. CAPLAN, Proc. Natl. Acad. Sci. USA, 78, 1647 (1981).PubMedCrossRefGoogle Scholar
  31. [31]
    S. R. CAPLAN and A. ESSIG, Bioenergetics and Linear Non-equilibrium Thermodynamics-The Steady State, Harvard University Press, Cambridge, Mass., (1983).Google Scholar
  32. [32]
    G. OSTER. A.S. PERELSON and A. KATCHALSKY, Quart. Rev. Biophys.,6,1(1973).CrossRefGoogle Scholar
  33. [33]
    L. PEUSNER, J. Chem. Phys., 77, 5500 (1982).CrossRefGoogle Scholar
  34. [34]
    D. C. MIKULECKY, Am. J. Physiol., 245, R1 (1983).PubMedGoogle Scholar

Further useful readings

  1. [1]
    S. R. CAPLAN in Current Topics in Bioenergetics, D.R. SANADI (Editor), Academic Press, New York (1971) Vol. 4, p. 1.Google Scholar
  2. [2]
    H. ROTTENBERG, S. R. CAPLAN and A. ESSIG in Membranes and Ion Transport, E. E. Bittar (Editor), Wiley-Interscience, London (1970), Vol. 1, p. 165.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Roy Caplan
    • 1
  1. 1.Department of Membrane ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations