Skip to main content

Active Ion Transport through Biomembranes

  • Chapter
  • 90 Accesses

Abstract

In this chapter we treat active ion transport in biomembranes ranging in complexity from plasma membranes to intact epithelia. Since we deal with studies in the stationary or near-stationary (pseudo-stationary) state, we need to understand the characteristics of stationary states. Accordingly, we may ask what happens if the number of restraints on a system in the steady state is changed. When the maximum number of restraints are applied (all forces being fixed) the stationary state is fully defined, since no more degrees of freedom are left. When no restraints at all are applied (all forces left to float), the system will eventually reach equilibrium. Frequently, however, we impose an intermediate number of restraints. For such situations, PRIGOGINE has shown that in linear systems characterized by ONSAGER symmetry the entropy production assumes the minimal value compatible with the imposed restraints. Thus, if some of the forces are fixed, the remainder will all reach values in the stationary state such that their conjugate fluxes become zero. For example, consider the proton-translocating ATP synthese in mitochondria. If the proton electrochemical potential gradient is clamped, the so-called phosphate potential will reach the steady-state value at which no further phosphorylation occurs (state 4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. I. PRIGOGINE, Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, (1961).

    Google Scholar 

  2. O. KEDEM, in Membrane Transport and Metabolism, A. KLEINZELLER and A. KOTYK (Editors), Academic Press, New York, (1961), p. 87.

    Google Scholar 

  3. T. ROSENBERG, Symp. Soc. Exp. Biol., 8, 27 (1954).

    CAS  Google Scholar 

  4. A. ESSIG and S.R. CAPLAN, Biophys. J., 8, 1434, (1968).

    Article  PubMed  CAS  Google Scholar 

  5. H. H. USSING and K. ZERAHN, Acta Physiol. Scand., 23, 110 (1951).

    Article  PubMed  CAS  Google Scholar 

  6. A. LEAF, J. ANDERSON and L.B. PAGE, J. Gen. Physiol., 41, 657 (1958).

    Article  PubMed  CAS  Google Scholar 

  7. T. SAITO, P. D. LIEF and A. ESSIG, Am. J. Physiol., 226, 1265 (1974).

    PubMed  CAS  Google Scholar 

  8. T. U. L. BIBER and M.L. SANDERS, J. Gen. Physiol., 61, 529 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. F. L. VIEIRA, S. R. CAPLAN and A. ESSIG, J. Gen. Physiol., 59, 77 (1972).

    Article  PubMed  CAS  Google Scholar 

  10. M. A. LANG, S. R. CAPLAN and A. ESSIG, Biochim. Biophys. Acta, 464, 571 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. T. SAITO, A. ESSIG and S.R. CZ, Biochim. Biophys. Acta, 318, 371 (1973).

    Article  CAS  Google Scholar 

  12. M. M. CIVAN, O. KEDEM and A. LEAF, Am. J. Physiol., 211, 569 (1966).

    PubMed  CAS  Google Scholar 

  13. J. YONATH and M. M. CIVAN, J. Membr. Biol., 5, 366 (1971).

    Article  Google Scholar 

  14. E. H. LARSEN, in Transport Mechanisms in Epithelia, H. H. USSING and N. A. THORN (Editors), Academic Press, New York, (1973), p. 131.

    Google Scholar 

  15. C. D. HONG and A. ESSIG, J. Membr. Biol., 28, 121 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. V. KOEFOED-JOHNSEN and H. H. USSING, Acta Physiol. Scand., 28, 60 (1953).

    Article  PubMed  CAS  Google Scholar 

  17. H. H. USSING, Acta Physiol. Scand., 19, 43 (1949).

    Article  CAS  Google Scholar 

  18. A. L. HODGKIN and R.D. KEYNES, J. Physiol. (London), 128, 61 (1955).

    PubMed  CAS  Google Scholar 

  19. O. KEDEM and A. ESSING, J. Gen. Physiol., 48, 1047 (1965).

    Article  PubMed  CAS  Google Scholar 

  20. P. F. CURRAN, A.E. TAYLOR and A.K. SOLOMON, Biophys. J., 7, 879 (1967).

    Article  PubMed  CAS  Google Scholar 

  21. M. H. GOTTLIEB and K. SOLLNER, Biophys. J., 8, 515 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. R. C. DE SOUSA, J. H. LI and A. ESSIG, Nature, London) 231, 44 (1971).

    Article  Google Scholar 

  23. A. ESSIG, O. KEDEM and T. L. HILL, J. Theor. Biol., 13, 72 (1966).

    Article  CAS  Google Scholar 

  24. G. M. SHEAN and K. SOLLNER, Ann. N.Y. Acad. Sci., 137, 759 (1966).

    Article  PubMed  CAS  Google Scholar 

  25. F. M. SNELL, S. SHULMAN, R.P. SPENCER and C. MOOS, Biophysical Principles of Structure and Function, Addison-Wesley, London, (1965), p. 320.

    Google Scholar 

  26. A. ESSIG, Biophys. J., 8, 53 (1968).

    Article  PubMed  CAS  Google Scholar 

  27. E. L. KING and C. ALTMAN, J. Phys. Chem., 60, 1375 (1956).

    Article  CAS  Google Scholar 

  28. T. L. HILL, Free Energy Transduction in Biology, Academic Press, New York, (1977).

    Google Scholar 

  29. S. R. CAPLAN, Proc. Natl. Acad. Sci. USA, 78, 4314 (1981).

    Article  PubMed  CAS  Google Scholar 

  30. A. ESSING and S. R. CAPLAN, Proc. Natl. Acad. Sci. USA, 78, 1647 (1981).

    Article  PubMed  CAS  Google Scholar 

  31. S. R. CAPLAN and A. ESSIG, Bioenergetics and Linear Non-equilibrium Thermodynamics-The Steady State, Harvard University Press, Cambridge, Mass., (1983).

    Google Scholar 

  32. G. OSTER. A.S. PERELSON and A. KATCHALSKY, Quart. Rev. Biophys.,6,1(1973).

    Article  CAS  Google Scholar 

  33. L. PEUSNER, J. Chem. Phys., 77, 5500 (1982).

    Article  CAS  Google Scholar 

  34. D. C. MIKULECKY, Am. J. Physiol., 245, R1 (1983).

    PubMed  CAS  Google Scholar 

Further useful readings

  1. S. R. CAPLAN in Current Topics in Bioenergetics, D.R. SANADI (Editor), Academic Press, New York (1971) Vol. 4, p. 1.

    Google Scholar 

  2. H. ROTTENBERG, S. R. CAPLAN and A. ESSIG in Membranes and Ion Transport, E. E. Bittar (Editor), Wiley-Interscience, London (1970), Vol. 1, p. 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Caplan, S.R. (1987). Active Ion Transport through Biomembranes. In: Milazzo, G., Blank, M. (eds) Bioelectrochemistry II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0951-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0951-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8261-7

  • Online ISBN: 978-1-4613-0951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics