Alteration of Seedling Germination and Amine Levels by Two Mycotoxins

  • L. Bruce Weekley
  • Charles E. O’rear
  • Gerald C. Llewellyn
Part of the Biodeterioration Research book series (BIOR, volume 1)


Aflatoxins (AFTs) and trichothecene toxins are secondary metabolites of the fungi Aspergillus spp. and Fusarium spp., respectively. Both of these mycotoxins pose a substant ialagri cultural problem since they often are produced by the fungi in wheat and maize (Goldblatt, 1969; Dashek et al. , 1986). Also, they have been reported to produce toxins in soybean and rice cultures (Richardson e t al., 1985).


Seed Germination Barley Seed Hypocotyl Length Germination Inhibitor Hypocotyl Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adekunle, A.A. and Bassir, O. (1973). The effect of aflatox in B1 and palmo toxin BO and GO on t he germination and leaf color of the cowpea (Vigna sinensis). Mycopathol. Mycol. Appl., 51, 299–305.PubMedCrossRefGoogle Scholar
  2. Borthwick, H.A., Hendricks, S.B., Parker, M.W., Toole, E.H., and Tolle, V.K. (1952). A reversible photo reaction controlling seed germination. Proc. Natl. Acad. Sci. (U.S.), 38, 662–666.CrossRefGoogle Scholar
  3. Crisan, E.V. (1973). Effects of aflatoxin on seedling growth and ultrastructure in plants. Appl. Microbiol., 12, 991–1000.Google Scholar
  4. Dashek, W.V. and Llewellyn, G.C. (1974). The influence of the carcinogenic aflatoxin B1 on the metabolism of germinating lily pollen, In: Fertilization in Higher Plants, pp. 351–360 (H.F. Linskens, ed. ), North Holland Publishing Co., Amsterdam.Google Scholar
  5. Dashek, W.V., Mayfield, J.E., Llewellyn, G.C., O’Rear, C.E., and Bata, A. (1986). Trichothecenes and yellow rain: Possible biological warefare agents. Bio Essays, 4 (1) 27–30.Google Scholar
  6. Denckla, W.D. and Dewey, H.F. (1967). The determination of tryptophanin plasma liver and urine. J. Lab. Clin. Med., 69, 160–169.PubMedGoogle Scholar
  7. Evenari, M. (1949). Germination inhibitors. Bot. Rev., 15, 153–194.CrossRefGoogle Scholar
  8. Fujisawa, H. (1966). Role of nuclei acid and protein metabolism in the initiation of growth at germination. Plant Cell Physiol., 7, 185–198.Google Scholar
  9. Filner, P. and Varner, J.E. (1967). Asimple and unequivocal test for de novo synthesis of enzyme: Density labeling of barley a-amylase with H2O18. Proc. Natl. Acad. Sci. (U.S.), 58, 1520–1526.CrossRefGoogle Scholar
  10. Gientka-Rychter, A. and Cherry, J. (1968). De novo synthesis of isocitrase in peanut cotyledons. Plant Physiol., 43, 653–659.PubMedCrossRefGoogle Scholar
  11. Goldblatt, L.A. (1969). Aflatoxin: Scientific Background, Control and Implication, pp. 10–89, Academic Press, N.Y.Google Scholar
  12. Jarvis, B., Franklin, B., and Cherry, J. (1968a). Increased DNA template and RNA polymerase associated with the breaking of seed dormancy. Plant Physiol., 43, 1734–1736.PubMedCrossRefGoogle Scholar
  13. Jarvis, B., Franklin, B., and Cherry, J. (1968b). Increased nucleic and synthesis inrelation to the breaking of dormancy of hazel seed by gibberellic acid. Planta, 83, 257–266.CrossRefGoogle Scholar
  14. Koller, D. (1957). Germination-regulating mechanisms in some desert seeds, IV: Atriplex dimorphostegia, Ecology, 38, 1–13.Google Scholar
  15. Llewellyn, G.C., Gentry, C.L., Mayo, E.S, and Dashek, W.V. (1982). Aflatoxin effect son spice seed germination and root elongation. Z. Lebensm. Unters. Forsch., 174, 18–22.CrossRefGoogle Scholar
  16. Munro, H.N. (1968). Role of amino acid supply in regulating ribosome function. Fed. Proc. Am. Soc. Exp. Biol., 27, 1231–1239.Google Scholar
  17. Poljakoff-Mayber, A., Goldschmidt Blumenthal, S., and Envenari, M. (1957). The growth substance control of germinating lettuce seed. Physiol. Plant, 10, 14–19.CrossRefGoogle Scholar
  18. Presley, H.T. and Fowden, L. (1965). Acid phosphatase and isocitrase production during seed germination. Phytochem., 4, 169–176.CrossRefGoogle Scholar
  19. Reiss, J (1970). Forderang der aktivitat von B. indolylessig Saive durch aflatoxin B1. Z. fur Pflanzenphysiol., 64, 260–262.Google Scholar
  20. Reiss, J. (1977). Effect of mycotoxins on the development of epiphyllous buds of Kalanchoe daigremontiona. Z. fur Pflanzenphysiol. 82, 446–449.Google Scholar
  21. Reynolds, J.S., Kimbrough, T.D., and Weekley, L.B. (1984). Evidence for enzymatic 5-hydroxylation of indole-3-acetic acid in vitro by extracts of Sedum morganianum. Z. fur Pflanzenphysiol., 112, 465–470.Google Scholar
  22. Reynolds, J.D., Kimbrough, T.D., and Weekley, L.B. (1985). The effect of light quality on 5-hydroxyindole metabolism in leaves of Sedum morganianum (Crassulaceae). Biochem. Physiol. Pflanzen., 180, 345–351.Google Scholar
  23. Reynolds, J.D., Kimbrough, T.D., Humphreys, K.H., and Weekley, L.B., (1986). Diurnal changes in tissue leaf levels of tryptophan, tryosine, and amine metabolites in Sedum morganianum and Sedum pachyphy1lum. Biochem. Physiol. Pflanzen., in press.Google Scholar
  24. Richardson, K.E., Hagler, W.M., Haney, C.A., and Hamilton, P.B. (1985). Zearalenone and trichothecene production in soybeans by toxigenic Fusarium. J. Food. Protect., 48 (3) 240–243.Google Scholar
  25. Rowsell, E.V. and Good, L.J. (1962). Latent p-amylase of wheat: Its mode of attachment to glutenin and its relase. Biochem. J., 84, 73–74.Google Scholar
  26. Shain, Y. and Mayer, A.M. (1968). Activation of enzymes during germination: Amylopectin-1, 6-glucosidase in peas. Physiol. Plant, 21, 765–766.CrossRefGoogle Scholar
  27. Shull, C.A. (1916). Measurement of the surface forces in soils. Bot. Gaz., 62, 1–31.CrossRefGoogle Scholar
  28. Tachiki, K.H. and Aprison, M.H. (1975). Fluorometric assay f or 5-hydroxytryptophan with sensitivity in the picomole range. Analyt. Chem., 47, 7–13.CrossRefGoogle Scholar
  29. Tepper, H.B., Hollis, C., Galson, E., and Sondheimer, E. (1967). Germination of excised Praxinus embryos with and without phleomycin. Plant Physiol., 42, 1493–1496.PubMedCrossRefGoogle Scholar
  30. Truelove, B., Davis, D.E., and Thompson, O.C. (1970). The effects of aflatoxin B1 on protein synthesis by cumcumber cotyledon discs. Canad. J. Bot., 48, 485–491.CrossRefGoogle Scholar
  31. Wallkes, T.P., and Udenfriend, S. (1957). A fluoro metric method for the estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med., 50 (5) 733–736.Google Scholar
  32. Walker, S.J., Llewellyn, G.C., Lillehoj, E.B., and Dashek, W.V. (1985). Uptake and subcellular distribution of aflatoxin B1 by excised, culture d soybean roots. In: Trichothecenes and Other Mycotoxins. pp. 349–364 (J. Lacey, ed. ), John Wiley and Sons, London.Google Scholar
  33. Young, J.W., Dashek, W.V., and Llewellyn, G.C. (1978). Aflatoxin B1. influence on excised soya-bean root growth, 14C-leucine uptake, and incorporation. Mycopathologia, 66, 91–97.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. Bruce Weekley
    • 1
  • Charles E. O’rear
    • 2
  • Gerald C. Llewellyn
    • 3
  1. 1.School of Veterinary MedicineColorado State UniversityFort CollinsUSA
  2. 2.Department of Forensic SciencesThe George Washington UniversityUSA
  3. 3.Bureau of Toxic Substances InformationVirginia Department of HealthRichmondUSA

Personalised recommendations