Superconductivity in Heavy Electron Systems: Axial or Polar State?

  • Richard A. Klemm


Recently, there has been some difference of opinion as to the nature of the gap anisotropy in heavy electron superconducting materials. Some workers1 have suggested that the similarity of the specific heat measurements on UBe13 with those on the A phase of 3He was indicative of an axial-like state, in which the superconducting gap exhibits isolated nodal points. Other workers2 suggested that the specific heat measurements on UPt3 were more indicative of a polar-like state, in which the superconducting gap exhibits a line or lines of nodes. There have been interpretations of many other experiments as well that have been controversial. It is the purpose of this paper to address the question of the nodal structure of the gap in those materials. To do so, we would like to examine the cases of the upper critical field Hc2, the ultrasonic attenuation a, and especially the microwave conductivity tensor Qij.


Ultrasonic Attenuation Axial State Nodal Structure Vertex Correction Specific Heat Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk, and J.L. Smith, Phys. Rev. Lett. 52: 1915 (1984).CrossRefGoogle Scholar
  2. 2.
    A. Sulpice, P. Gandit, J. Chaussy, J. Flouquet, D. Jaccard, P. Lejay, and J. L. Tholence, J. Low Temp. Phys. 62 39 (1986).CrossRefGoogle Scholar
  3. 3.
    J. W. Chen, S. E. Lambert, M. B. Maple, Z. Fisk, J. L. Smith, G. R. Stewart, and J. O. Willis, Phys. Rev. B30: 1583 (1984)CrossRefGoogle Scholar
  4. 3a.
    B. Shivaram, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett. 57: 1259 (1986).CrossRefGoogle Scholar
  5. 4.
    L. DeLong, L. N. Hall, S. K. Malik, W. Kwak, G. W. Crabtree, and K. Gschneidner, Jr., paper A15, this conference.Google Scholar
  6. 5.
    R. Klemm, J. Less Common Metals, to be published.Google Scholar
  7. 6.
    B. Golding, D. J. Bishop, B. Batlogg, W. Haemmerle, Z. Fisk, J. L. Smith, and H. R. Ott, Phys. Rev. Lett. 55: 2479 (1985).CrossRefGoogle Scholar
  8. 7.
    D. J. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 53: 1009 (1984).CrossRefGoogle Scholar
  9. 8.
    D. S. Hirashima and H. Namazawa, Prog. Theor. Phys. 74: 400 (1985)CrossRefGoogle Scholar
  10. 8a.
    H. Monien, K. Scharnberg, L. Tewordt, and N. Schopohl, Phys. Rev. B34: 3487 (1986).CrossRefGoogle Scholar
  11. 9.
    K. Miyake and C. Varma, Phys. Rev. Lett. 57: 1627 (1986).CrossRefGoogle Scholar
  12. 10.
    S. Coppersmith and R. Klemm, Phys. Rev. Lett. 56: 1870 (1986)CrossRefGoogle Scholar
  13. 10a.
    L. Coffey, preprint.Google Scholar
  14. 11.
    F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B64: 175 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard A. Klemm
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations