Advertisement

Spin Fluctuation Effects in Germanium Doped YbPd2Si2: LIII-Edge, Susceptibility and Resistivity Studies

  • A. M. Umarji
  • C. Godart
  • L. C. Gupta
  • G. Krill
  • R. Vijayaraghavan

Abstract

Many ternary compounds with the general formula YbM2X2 (M = transition metal, X = Si and Ge) have been prepared and studied [1,2]. In these compounds, Yb can be 2+, 3+ or intermediate valence (IV) depending on the chemical composition of the alloy [3–5]. Intermediate valence in YbPd2Si2 was first reported using x-ray photoemission spectroscopy and LIII-edge absorption [3]. The magnetic susceptibility [6] and Mossbauer [7] measurements confirmed that Yb is IV but close to 3+ valence state. Recent results on the other IV system, CeRu2Si2, showed that the Ge substitution on the Si site creates chemical pressure effects and pushes the valence of Ce closer to 3+ [8]. The Ge substitution should lead to a decrease in the valence of Yb in YbPd2Si2. However, with small concentrations of Ge introduced in the matrix, one may except an increase in the spin fluctuation temperature, (TSF). In such a case, one should see the scaling behaviour of X4f: i.e., the Yb derived 4f susceptibility X4f(T) should scale with T/TSF as X4f∼f(T/TSF) where f is a universal function.

Keywords

Magnetic Susceptibility Intermediate Valence Chemical Pressure Effect Intermediate Valence System Spin Fluctuation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Rieger, E. Parthe, Monat. fur Chemie, 100, 444 (1969).CrossRefGoogle Scholar
  2. 2.
    D. Rossi, R. Marazza and R. Ferro, J. Less Comm. Met., 66, 17 (1979).CrossRefGoogle Scholar
  3. 3.
    C.N.R. Rao, D.D. Sharma, P.R. Sarode, E.V. Sampathkumaran, L.C. Gupta and R. Vijayaraghavan, Chem. Phys. Lett. 76, 413 (1980).CrossRefGoogle Scholar
  4. 4.
    G.W. Hull, J.H. Wernick, T.H. Geballe, J.W. Waszczak and J.E. Bernardini Phys. Rev., B24, 6715 (1981).Google Scholar
  5. 5.
    V.A. Shaburov, Y.P. Smirnov, A.E. Sovestnov and A.V. Tyunis, Sov. Phys. JETP, 41, 262 (1985).Google Scholar
  6. 6.
    E.V. Sampathkumaran, K.H. Frank, G. Kalkowski, G. Kaindl, M. Domki and G. Wortmann, Phys. Rev. B29, 5702 (1984).Google Scholar
  7. 7.
    J.A. Hodges and G. Jehanno, J. de Physique, 45, 1663 (1984).CrossRefGoogle Scholar
  8. 8.
    C. Godart, A.M. Umarji, L.C. Gupta and R. Vijayaraghavan, Phys. Rev. B31, 7732 (1986).Google Scholar
  9. 9.
    as expected from low temperature behaviour in Ref. 10.Google Scholar
  10. 10.
    J. Lawrence, Phys. Rev. B20, 3770 (1979).Google Scholar
  11. 11.
    E.V. Sampathkumaran et al. see this conference proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. M. Umarji
    • 1
  • C. Godart
    • 1
    • 2
  • L. C. Gupta
    • 1
  • G. Krill
    • 1
    • 3
  • R. Vijayaraghavan
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia
  2. 2.ER 209, Chimie Metallurgique des TerresCNRSMeudonFrance
  3. 3.Universite de Nancy INancy CedexFrance

Personalised recommendations