Nuclear Magnetic Resonance in Heavy Fermion Systems

  • Yoshio Kitaoka
  • Ko-ichi Ueda
  • Takao Kohara
  • Yoh Kohori
  • Kunisuke Asayama

Abstract

Heavy-fermion (HF) systems discovered in rare-earth or actinide intermetallic compounds have been the intriguing subject of experimental [1,2,3] and theoretical [4] investigations. At low temperature, these systems having very large specific-heat coefficient and Pauli like susceptibility are characteristic of a strongly interacting electronic fermi liquid with heavy effective mass, which is derived from 4f- or 5f-electrons behaving as localized electrons at high temperature. It has become increasingly evident that the system has a new and unique ground state. The most outstanding and fascinating aspect is the fact that the compounds such as CeCu2Si2 [5], UBe13 [6] and UPt3 [7] exhibit a transition to the superconducting state. The superconducting properties are unusual, indicating that the heavy electrons are responsible for the superconductivity. Considerable amounts of experimental evidences, which conflict with the conventional theory, have suggested that the energy gap in these compounds is anisotropic, vanishing at points or lines on the Fermi surface [8,9,10,11]. First, these compounds have been discussed in analogy to superfluid 3He-A phase where the gap zeros of points are associated with the anisotropic triplet Cooper pairing. Subsequently, there have been many experimental and theoretical investigations to gain an insight into the nature and the mechanism of Cooper pairing of HF superconductor.

Keywords

Furnace Anisotropy Boron Coherence Nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.R. Stewart, Rev. Mod. Phys. 56 (1984) 755.CrossRefGoogle Scholar
  2. [2]
    F. Steglich, Theory of Heavy Fermions and Valence Fluctuations, edts. T. Kasuya and T. Saso (Springer-Verlag, 1985) p. 23.Google Scholar
  3. [3]
    Z. Fisk, H.R. Ott, T.M. Rice and J.L. Smith, Nature 320 (1986) 124.CrossRefGoogle Scholar
  4. [4]
    C.M. Varma, Comments Solid State Phys. 11 (1985) 221Google Scholar
  5. [4]
    P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham and J. W. Wilkins, Comments Cond. Mat. Phys. 12 (1986) 99.Google Scholar
  6. [5]
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schafer, Phys. Rev. Lett. 43 (1979) 1892.CrossRefGoogle Scholar
  7. [6]
    H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 50 (1983) 1595.CrossRefGoogle Scholar
  8. [7]
    G.R. Stewart, Z. Fisk, J.O. Willis and J.L. Smith, Phys. Rev. Lett. 52 (1984) 679.CrossRefGoogle Scholar
  9. [8]
    H.R. Ott, H. Rudigier, T.M. Rice, K. Ueda, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 53 (1984) 1915.CrossRefGoogle Scholar
  10. [9]
    D.J. Bishop, C.M. Varma, B. Batlogg, E. Burcher, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 53 (1984) 1009CrossRefGoogle Scholar
  11. [9]
    B. Golding, D.J. Bishop, B. Batlogg, W. H. Haemmerle, Z. Fisk, J.L Smith and H.R. Ott, Phys. Rev. Lett. 55 (1985) 2479.CrossRefGoogle Scholar
  12. [10]
    Y. Kitaoka, K. Ueda, T. Kohara and K. Asayama, Solid State Commun. 51 (1984) 461, and Y. Kitaoka, K. Ueda, T. Kohara, K. Asayama, Y. Onuki and T. Komatsubara, J. Magn. Magn. Mat. 52 (1985) 341.CrossRefGoogle Scholar
  13. [10]
    Y. Kitaoka, K. Ueda, T. Kohara, K. Asayama, Y. Onuki and T. Komatsubara, J. Magn. Magn. Mat. 52 (1985) 341.CrossRefGoogle Scholar
  14. [11]
    D.E. MacLaughlin, C. Tien, W.G. Clark, M.D. Lan, Z. Fisk, J.L. Smith and H.R. Ott, Phys. Rev. Lett. 53 (1984) 1833.CrossRefGoogle Scholar
  15. [12]
    Y. Onuki, Y. Shimizu and T. Komatsubara, J. Phys. Soc. Jpn. 53 (1984) 1210.CrossRefGoogle Scholar
  16. [13]
    G.R. Stewart, Z. Fisk and M.S. Wire, Phys. rev. B30 (1984) 482.Google Scholar
  17. [14]
    T. Fujita, K. Satoh, Y. Onuki and T. Komatsubara, J. Magn. Magn. Mat. 47–48 (1985) 66.CrossRefGoogle Scholar
  18. [15]
    J.D. Thompson, J.O. Willis, C. Godard, D.E. MacLaughlin and L.C. Gupta, Solid State Commun. 56 (1985) 169.CrossRefGoogle Scholar
  19. [16]
    M.J. Besnus, J.P. Kappler, P. Lehmann and A. Meyer, Solid State Commun. 55 (1985) 779.CrossRefGoogle Scholar
  20. [17]
    F. Steglich, U. Rauchschwalbe, U. Gottwick, H.M. Mayer, G. Spain, N. Grewe, U. Poppe and J.J.M. Franse, J. App. Phys. 57 (1985) 3054.CrossRefGoogle Scholar
  21. [18]
    J.L. Tholence, P. Haen, D. Jaccard, P. Lejay, J. Flouquet and H.F. Braun, J. Appl. Phys. 57 (1985) 3172.CrossRefGoogle Scholar
  22. [19]
    J.J.M. Franse, P.H. Frings, A. de Visser, A. Menovsky, T.T.M. Palstra, P.H. Kes and J.A. Mydosh, Physica 126B (1984) 116.Google Scholar
  23. [20]
    Y. Kitaoka, K. Fujiwara, Y. Kohori, K. Asayama, Y. Onuki and T. Komatsubara, J. Phys. Soc. Jpn. 54 (1985) 3686.CrossRefGoogle Scholar
  24. [21]
    L.C. Gupta, D.E. MacLaughlin, Cheng Tien, C. Godart, M.A. Edwards and R.D. Parks, Phys. Rev. B28 (1983) 3637.Google Scholar
  25. [22]
    Y. Kitaoka, H. Arimoto, Y. Kohori and K. Asayama, J. Phys. Soc. Jpn. 54 (1985) 3236.CrossRefGoogle Scholar
  26. [23]
    M.J. Lysak and D.E. MacLaughlin, Phys. Rev. B 31 (1985) 6963.CrossRefGoogle Scholar
  27. [24]
    M. Takigawa, H. Yasuoka, T. Tanaka, Y. Ishizawa, M. Kasaya and T. Kasuya, J. Magn. Magn. Mat. 31–34 (1983) 391.CrossRefGoogle Scholar
  28. [25]
    H. Shiba, Prog, theor. Phys. 54 (1975) 967.CrossRefGoogle Scholar
  29. [26]
    Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, J. Phys. Soc. Jpn. 55 (1986) 723.CrossRefGoogle Scholar
  30. [27]
    Y. Kitaoka, K. Fujiwara, S. Hiramatsu, K. Asayama, Y. Onuki and T. Komatsubara, unpublished.Google Scholar
  31. [28]
    L.C. Hebei and C.P. Slichter, Phys. Rev. 113 (1959) 1504.CrossRefGoogle Scholar
  32. [29]
    P.W. Anderson and P. Morel, Phys. Rev. 123 (1961) 1911.CrossRefGoogle Scholar
  33. [30]
    K. Yosida, Phys. Rev. 110 (1958) 769.CrossRefGoogle Scholar
  34. [31]
    R. Balian and N.R. Werthamer, Phys. Rev. 131 (1963) 1553.CrossRefGoogle Scholar
  35. [32]
    C. Stassis, J. Arthur, C.F. Majkrzak, J.D. Axe, B. Batlogg, J. Remeika, Z. Fisk, J.L. Smith and A.S. Edelstein, Phys. Rev. B 34 (1986) 4382.CrossRefGoogle Scholar
  36. [33]
    R.H. Heffner, D.W. Cooke, Z. Fisk, R.L. Hutson, M.E. Schillaci, J.L. Smith, J.O. Willis, D.E. MacLaughlin, C. Boekema, R.L. Lichti, A.B. Denison and J. Oostens, Phys. Rev. Lett. 57 (1986) 1255.CrossRefGoogle Scholar
  37. [34]
    B. Batlogg, J.P. Remeika, A.S. Cooper and Z. Fisk, J. Appl. Phys. 55 (1984) 2001.CrossRefGoogle Scholar
  38. [35]
    J. Aarts, F.R. deBoer and D.E. MacLaughlin, Physica 121B (1983) 162.Google Scholar
  39. [36]
    K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara and K. Asayama, to be published in J. Phys. Soc. Jpn.Google Scholar
  40. [37]
    F.J. Ohkawa and H. Fukuyama, J. Phys. Soc. Jpn. 53 (1984) 4344.CrossRefGoogle Scholar
  41. [38]
    T. Matsuura, K. Miyake, H. Jichu, Y. Kuroda and Y. Nagaoka, J. Magn. Magn. Mat. 52 (1985) 239.CrossRefGoogle Scholar
  42. [39]
    Y. Kohori, T. Kohara, T. Kaneko, Y. Oda, Y. Kitaoka and K. Asayama, unpub1ished.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Yoshio Kitaoka
    • 1
  • Ko-ichi Ueda
    • 2
  • Takao Kohara
    • 3
  • Yoh Kohori
    • 1
  • Kunisuke Asayama
    • 1
  1. 1.Department of Material Physics, Faculty of Engineering ScienceOsaka UniversityToyonaka, Osaka 560Japan
  2. 2.Division of Science of Materials, Graduate School of Science and TechnologyKobe UniversityNada-ku, Kobe 657Japan
  3. 3.College of Liberal ArtsKobe UniversityNada-ku, Kobe 657Japan

Personalised recommendations