The Role of Compound Electronic Structure in Ce-Valence Instabilities

  • M. Croft
  • R. Neifeld
  • B. Qi
  • G. Liang
  • I. Perez
  • S. Gunapala
  • F. Lu
  • S. A. Shaheen
  • E. G. Spencer
  • N. Stoffel
  • M. den Boer

Abstract

The transition metals are the largest and most chemically diverse group of the periodic table. This has naturally lead transition metal compounds to a prominent position in the study of rare earth valence instabilities—a field where chemical flexibility and diversity are crucial to exploring the instability.1–4 Indeed, experience has shown that differing host electronic structure can alter the often subtle balance between magnetism, spin fluctuations, charge fluctuations and superconductivity in systems near to a valence instability.1–4 In this paper we explore the Ce valence instability in several very broad classes of transition metal compounds. We have several objectives in doing so. First, we wish to illustrate how rare earth valence state determination via L3 x-ray absorption spectroscopy can help draw together materials “tricks of the trade” into a more coherent picture of the underlying valence instability—electronic structure coupling. Second, these L3-valence measurements and their electronic structure tends can be used to efficiently identify new materials in the most interesting portion of the instability6. Finally, we wish to advance the notion that the 4f levels of an unstable valence atom can serve as a marker in the electronic structure of its host material. Moreover, that reading of this marker (via L3-valence determination for example) can in turn be thought of as a probe of the host electronic structure.

Keywords

Boron Hexagonal CeRu Vale AuCu 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example the review Article J. M. Lawrence, P. Riseborough and R. D. Parks, Rep. on Prog, in Phys. 44, 1 (1981) and references therein. Valence Instabilities and Related Narrow Band Phenomena. R. D. Parks, Eds., Plenum, New York, (1977).CrossRefGoogle Scholar
  2. 2.
    See “Valence Instabilities” P. Wachter and H. Boppart, Editors (North Holland, Amsterdam 1982).Google Scholar
  3. 3.
    See Valence Fluctuations in Solids, L. Falicov, W. Hanke, M. P. Maple, Edrs. (North Holland, Amsterdam, 1981).Google Scholar
  4. 4.
    See J. Mag. and Mag. Mat. 47 and 48, (1985). [Koln Conf. on Valence Instabilities.]Google Scholar
  5. 5.
    R. Neifeld, M. Croft, T. Mihalisin, M. Torikachvili, M. B. Maple, Phys. Rev. B. 32 (Rapid Comm.), 6928 (1985).CrossRefGoogle Scholar
  6. 6.
    G. Liang, R. Neifeld, B. Qi, and M. Croft, to be published Jour. App. Physics (1986).Google Scholar
  7. 7.
    See, for example, Handbook of Chemistry and Physics, 63rd ed., edited by Robert C. Weast (CRC Press, Boca Raton, FL, 1982), pp. F167, E76–77, D188, for properties of the pure transition metals.Google Scholar
  8. 8.
    V. L. Moruzzi, A. R. Williams, and J. F. Janak, Phys. Rev. B 15, 2854 (1977).CrossRefGoogle Scholar
  9. 9.
    P. Scoboria, J. E. Crow and T. Mihalisin, J. Appl. Phys. 50, (3) 1895 (1979).CrossRefGoogle Scholar
  10. 10.
    J. Mignot and J. Wittig in Physics of Solids at High Pressure (Schilling and Shelton editors, North Holland, Amsterdam, 1981) p. 311.Google Scholar
  11. 11.
    D. DiMarzio, G. Liang, M. Croft, to be published.Google Scholar
  12. 12.
    G. Liang, D. Johnston, M. Croft, to be published.Google Scholar
  13. 13.
    T. Mihalisin, P. Scoboria, J. Ward, Phys. Rev. Lett. 46, 861 (1981).CrossRefGoogle Scholar
  14. 14.
    R. Vijayaraghavan, J. Mag. & Mag. Mat. 47 & 48, 561 (1985), and references therein.CrossRefGoogle Scholar
  15. 15.
    I. Perez, G. Liang, J. Zhou, H. Jhans, M. Croft, S. K. Malik, to be published, J. App. Phys. 1986; I. Perez, J. B. Zhou, H. Jhans, S. A. Shaheen, M. Croft, submitted to Phys. Rev. B.Google Scholar
  16. 16.
    S. A. Shaheen, J. S. Schiling, P. Klqvins, C. B. Vining, R. N. Shelton, J. Mag. & Mag. Mat. 47 & 48. 285 (1985).CrossRefGoogle Scholar
  17. 17.
    F. Lu, M. Croft, E. G. Spencer, Phys. Rev. B33 (Rapid Comm.) 5450 (1986).Google Scholar
  18. 18.
    M. Croft, F. Lu, M. Melczer, A. Zollandz, G. Hall and E. Spencer, J. Mag. and Mag. Mat. 47 & 48 115 (1985).CrossRefGoogle Scholar
  19. 19.
    See W. K. Chu, J. Mayer, M. Nicolet, Backscattering Spectrometry (Acad. Press, N.Y., 1978).Google Scholar
  20. 20.
    T. Guo, M. L. den Boer, Phys. Rev. B31. 6233 (1984).Google Scholar
  21. 21.
    F. Lu, N. Stoffell, S. Gunapala, M. Croft, to be published.Google Scholar
  22. 22.
    C. Ammarguellat, C. Godart, P. Haen, G. Krill, these proceedings.Google Scholar
  23. 23.
    J. Durand, D. Malterre, G. Marchall, G. Krill, M. F. Ravet and J. P. Kappler, J. Appl. Phys. 57, 3154 (1985)CrossRefGoogle Scholar
  24. 24.
    D. Malterre, G. Krill, J. Durand, G. Marchal and M. F. Ravet, Phys. Rev. B 34,2176, (1986)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • M. Croft
    • 1
  • R. Neifeld
    • 1
  • B. Qi
    • 1
    • 2
  • G. Liang
    • 1
  • I. Perez
    • 1
  • S. Gunapala
    • 1
  • F. Lu
    • 1
  • S. A. Shaheen
    • 1
  • E. G. Spencer
    • 1
    • 3
  • N. Stoffel
    • 1
    • 4
  • M. den Boer
    • 1
    • 5
  1. 1.Physics Dept.Rutgers Univ.PiscatawayUSA
  2. 2.Center of Fundamental PhysicsUniv. of Science and Technology of ChinaHefeiPeoples Republic of China
  3. 3.AT&T Bell LabsMurray HillUSA
  4. 4.Bell Communications Research Inc.Red BankUSA
  5. 5.Dept. of PhysicsHunter College, CUNYUSA

Personalised recommendations