Overt and Cryptic Functions of the Mouse Mammary Tumor Virus Long Terminal Repeat DNA Sequence

  • Gilbert H. Smith


As for other retroviruses, the synthesis of mouse mammary tumor virus (MMTV) proviral DNA by reverse transcriptase is a complex and indispensable process for establishment of a vegetative viral life cycle. MMTV contains a single-stranded genomic RNA with a sedimentation coefficient of between 60–70S and a molecular mass of 6.45 x 106daltons, (1,2). This virion-contained RNA consists of two subunits (35S), each with molecular masses of 2.93 x 106daltons. The 3’ terminus of MMTV genomic RNA is polyadenylated, and the 5’ terminus most likely carries the CAP structure 5’m7GpppG which is present in other retroviral genomic RNAs (3). Like other retroviruses, MMTV genomic RNA is copied into proviral dsDNA by a virally encoded reverse transcriptase. The proviral DNA is eventually integrated into the host cell chromosomal DNA in an apparently random fashion (4,5)


Mammary Gland Mammary Tumor Mouse Mammary Tumor Virus Mammary Epithelium Mouse Mammary Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



mouse mammary tumor virus


long terminal repeat


open reading frame


deoxyribonucleic acid


ribonucleic acid


messenger RNA




adenosine diphosphate


hormone responsive element


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1..
    Duesberg, P.G., and Cardiff, R.D. Structural relationships between the RNA of mammary tumor virus and those of other RNA tumor viruses. Virology, 36: 696 – 700, 1968.PubMedCrossRefGoogle Scholar
  2. 2..
    Dion, A.S., Heine, J., Pomenti, A.A., Korb, J., and Weber, G.H. Electrophoretic analysis of the molecular weight of murine mammary tumor virus RNA. J. Virol., 22: 82 – 825, 1977.Google Scholar
  3. 3..
    Bishop, J.M. Retroviruses. Annu. Rev. Biochem., 47: 35 – 89, 1978.PubMedCrossRefGoogle Scholar
  4. 4..
    Temin, H.M. Structure, variation, and synthesis of retroviral long terminal repeat. Cell, 27: 1 – 3, 1981.PubMedCrossRefGoogle Scholar
  5. 5..
    Varmus,H.E. Form and function of retroviral proviruses. Science 216: 812 – 820, 1982.PubMedCrossRefGoogle Scholar
  6. 6..
    Majors, J.E., and Varmus, H.E. Nucleotide sequences at host-proviral junctions for mouse mammary tumor virus. Nature, 289: 253 – 258, 1981.PubMedCrossRefGoogle Scholar
  7. 7..
    Nusse, R., and Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31: 990 – 109, 1982.CrossRefGoogle Scholar
  8. 8..
    Peters, G., Lee, A.E., and Dickson, C. Tumorigenesis by MMTV: evidence for a common region for proviral integration in mammary tumors. Cell, 33: 369 – 377, 1983.PubMedCrossRefGoogle Scholar
  9. 9..
    Donehower, L.A., Huang, A.L., and Hager, G.L. Regulatory and coding potential of the mammary tumor virus long terminal repeat. J. Virol., 37: 226 – 238, 1981.PubMedGoogle Scholar
  10. 10..
    Kennedy, N., Knedlitschek, G., Groner, B., Hynes, N.E., Herrlich, P., Michalides, R., and Van Ooyen, A.J.J. The long terminal repeats of an endogenous mouse mammary tumor virus are identical and contain a long open reading frame extending into adjacent sequences. Nature, 295: 622 – 624, 1982.PubMedCrossRefGoogle Scholar
  11. 11..
    Fasel, N.K., Pearson, E.K., Bueti, E., and Diggelmann, H. The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long coding signal and signals for hormonally regulated transcription. EMBO J., 1: 3 – 7, 1982.PubMedGoogle Scholar
  12. 12..
    Klemenz, R., Reinhardt, M., and Diggelmann, H. Sequence determination of the 3’ end of mouse mammary tumor virus RNA. Mol. Biol. Rep. 7: 123 – 126, 1981.PubMedCrossRefGoogle Scholar
  13. 13..
    Goldberg, M.L, Sequence analysis of Drosophilahistone genes. Ph.D. thesis, Stanford University, 1978.Google Scholar
  14. 14..
    Pfahl, M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor virus promoter. Cell, 31: 475 – 482, 1982.PubMedCrossRefGoogle Scholar
  15. 15..
    Lee, F., Hall, C.V., Ringold, G.M., Dobson, D.E., Luh, J., and Jacob, P.E. Functional analysis of the steroid hormone control region of mouse mammary tumor virus. Nucleic Acids Res., 12: 4191 – 4206, 1984.PubMedCrossRefGoogle Scholar
  16. 16..
    Majors, J., and Varmus, H.E. A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked heterologous gene. Proc. Natl. Acad. Sci. USA, 80: 5866 – 5870, 1983.PubMedCrossRefGoogle Scholar
  17. 17..
    Chandler, V.L., Maler, B.A., and Yamamoto, K.R. DNA sequences bound specifically by glucocorticoid receptor in vitrorender a heterologous promoter responsive in vivo. Cell, 33: 489 – 499, 1983.PubMedCrossRefGoogle Scholar
  18. 18..
    Phahl, M., McGinnis, D., Hendricks, M., Groner, B., and Hynes, N.E. Correlation of glucocorticoid receptor-binding sites on MMTV proviral DNA with hormone inducible transcription. Science, 222: 1341 – 1343, 1983.CrossRefGoogle Scholar
  19. 19.
    Ponta, H., Gunzburg, W.H., Salmons, B., Groner, B., and Herrlich, P. Mouse mammary tumor virus: a proviral gene contributes to the understanding of eukaryotic gene expression and mammary tumori-genesis. J. Gen. Virol., 66: 931 – 943, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Wheeler, D.A., Butel, J.S., Medina, D., Cardiff, R.D., and Hager, G.L. Transcription of mouse mammary tumor virus: identification of a candidate in RNA for the long terminal repeat gene product. J. Virol., 46: 42 – 49, 1983.PubMedGoogle Scholar
  21. 21.
    Van Ooyen, A.J.J., Michalides, R., and Nusse, R. Structural analysis of a 1.7 kb mouse mammary tumor virus-specific RNA. J. Virol., 45: 362 – 370, 1984.Google Scholar
  22. 22.
    Graham, D.E., Medina, D., and Smith, G.H. Increased concentration of an endogenous proviral mouse mammary tumor virus long terminal repeat-containing transcript is associated with neoplastic transformation of mammary epithelium in C3H/Sm mice. J. Virol, 49: 819 – 827, 1984.PubMedGoogle Scholar
  23. 23.
    Dickson, C., and Peters, G. Protein coding potential of mouse mammary tumor virus genome RNA as examined by in vitrotranslation. J. Virol., 37: 36 – 47, 1981.PubMedGoogle Scholar
  24. 24.
    Dickson, C., Smith, R., and Peters, G. In vitrosynthesis of polypeptides encoded by the long terminal repeat region of mouse mammary tumor virus DNA. Nature, 291: 511 – 513, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Racevskis, J., and Prakash, O. Proteins encoded by the long terminal repeat region of mouse mammary tumor virus: identification by hybrid-selected translation. J. Virol., 51: 604 – 610, 1984.PubMedGoogle Scholar
  26. 26.
    Dickson, C., and Peters, G. Proteins encoded by mouse mammary tumor virus. Curr. Top. Microbiol. Immunol., 106: 1 – 34, 1983.PubMedGoogle Scholar
  27. 27.
    Andervont, H.B., and Dunn, T.B. Mammary tumors in mice presumable free of the mammary tumor agent. J. Natl. Cancer Inst., 8: 227 – 233, 1948.PubMedGoogle Scholar
  28. 28.
    Hummel, K.P., and Little, C.C. Studies on the mouse mammary tumor agent. I. The agent in blood and other tissues in relation to the physiologic or endocrine state of the donor. Cancer Res., 9: 129 – 134, 1949.PubMedGoogle Scholar
  29. 29.
    Muhlbock, O. Studies on the transmission of the mouse mammary tumor agent by the male parent. J. Natl. Cancer Inst., 12: 819 – 837, 1952.PubMedGoogle Scholar
  30. 30.
    Nandi, S., DeOme, K.B., and Handin, M. Mammary tumor virus activity in blood and mammary tissues of C3H and BALB/c f C3H strains of mice. J. Natl. Cancer Inst., 35: 309 – 318, 1965.PubMedGoogle Scholar
  31. 31.
    Blair, P.B. Immunology of the mouse mammary tumor virus (MTV). In: J. W. Burdette (ed.), Virus Inducing Cancer, pp. 288 – 304. Salt Lake City: University of Utah Press, 1966.Google Scholar
  32. 32.
    Pitelka, D.R., Bern, H.A., Nandi, S., and DeOme, K.B. On the significance of virus-like particles in mammary tissues of C3Hf mice. J. Natl. Cancer Inst., 33: 867 -885, 1964.PubMedGoogle Scholar
  33. 33.
    Smith, G.H. Role of the milk agent in disappearance of mammary cancer in C3H/StWi mice. J. Natl. Cancer Inst., 36: 685 – 701, 1966.PubMedGoogle Scholar
  34. 34.
    Rongey, R.W., Abtin, A.H., Estes, H.D., and Gardner, M.B. Mammary tumor virus particles in the submaxillary gland, seminal vesicle, and non-mammary tumors of wild mice. J. Natl. Cancer Inst., 54: 1149 – 1156, 1975.PubMedGoogle Scholar
  35. 35.
    Arthur, L.O., Bauer, R.F., Orme, L.S., and Fine, D.L. Coexistence of the mouse mammary tumor virus (MMTV) major glycoprotein and natural antibodies to MMTV in sera of mammary tumor-bearing mice. Virology, 87: 266 – 275, 1978.PubMedCrossRefGoogle Scholar
  36. 36.
    Osterrieth, P.M., Kozma, S., Hendrick, J.C., Francois, C., Calberg-Bacq, C.M., Franchimont, P., and Gosselin, L. Detection of virus antigens in Swiss albino mice infected by milk-borne mouse mammary tumor virus: the effect of age, sex, and reproductive status. II. Radioimmunoassay of two virus components, gp47 and p28, in serum and organ extracts. J. Gen. Virol., 45: 41–50, 1979.PubMedCrossRefGoogle Scholar
  37. 37.
    Varmus, H.E., Quintrell, N., Medeiros, E., Bishop, J.m., Nowinski, R.C., and Sarkar, N.H. Transcription of mouse mammary tumor virus genes in tissue from high and low tumor incidence mouse strains. J. Mol. Biol., 79: 663 – 679, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    McGrath, C.M., Marineau, E.J., and Voyles, B.A. Changes in MuMTV DNA and RNA levels in BALB/c mammary epithelial cells during malignant transformation by exogenous MuMTV and by hormones. Virology, 87: 339 – 353, 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Michalides, R., Van Deemter, L., Nusse, R., Ropke, G., and Boot, L. Involvement of mouse tumor virus in spontaneous and hormone-induced mammary tumors in low-mammary-tumor mouse strains. J. Virol., 27: 551 – 559, 1978.PubMedGoogle Scholar
  40. 40.
    Michalides, R., Van Deemter, L., Nusse, R., and Hageman, P. Induction of mouse mammary tumor virus RNA in mammary tumors of BALB/c mice treated with urethane, X-irradiation and hormones. J. Virol., 31: 63 – 72, 1979.PubMedGoogle Scholar
  41. 41.
    Pauley, R.J., Medina, D., and Socher, S.H. Hormonal regulation of murine mammary tumor virus RNA expression during mammary tumori-genesis in BALB/c mice. J. Virol., 32: 557 – 566, 1979.PubMedGoogle Scholar
  42. 42.
    Cohen, J.C. Methylation of milk-borne and genetically transmitted mouse mammary tumor virus proviral DNA. Cell, 19: 653 – 662, 1980.PubMedCrossRefGoogle Scholar
  43. 43.
    Fanning, T.G., Vassos, A.B., and Cardiff, R.D. Methylation and amplification of mouse mammary tumor virus DNA in normal, premalignant and malignant cells of GR/A mice. J. Virol., 41: 1007 – 1016, 1982.PubMedGoogle Scholar
  44. 44.
    Drohan, W.N., Benade, L.E., Graham, D.E., and Smith, G.H. Mouse mammary tumor virus proviral sequences congenital to C3H/Sm mice are differentially hypomethylated in chemically-induced, virus-induced and spontaneous mammary tumors. J. Virol., 43: 876 – 884, 1982.PubMedGoogle Scholar
  45. 45.
    Mermod, J.J., Bourgeois, S., Defer, N., and Crepin, M. Demethylation and expression of murine mammary tumor proviruses in mouse thymoma cell lines. Proc. Natl. Acad. Sci. USA, 80: 110 – 114, 1983.PubMedCrossRefGoogle Scholar
  46. 46.
    GUnzburg, W.H., Hynes, N.E., and Groner, B. The methylation pattern of endogenous mouse mammary tumor virus proviral genes is tissue specific and stably inherited. Virology, 138: 212 – 224, 1984.PubMedCrossRefGoogle Scholar
  47. 47.
    Andervont, H.B., Dunn, T.B., and Canter, H.Y. Susceptibility of agent-free inbred mice and their F1 hybrids to estrogen-induced mammary tumors. J. Natl. Cancer Inst., 21: 783 – 811, 1958.PubMedGoogle Scholar
  48. 48.
    Andervont, H.B., and Dunn, T.B. Occurrence of mammary tumors in castrated agent-free male mice after limited or repeated exposure to diethylstilbestrol. J. Natl. Cancer Inst., 33: 143 – 147, 1964.PubMedGoogle Scholar
  49. 49.
    Hilgers, J., and Sluyser, M. (eds.), Mammary Tumors in the Mouse. Amsterdam: Elsevier/North Holland, 1981.Google Scholar
  50. 50.
    Ringold, G.M. Regulation of mouse mammary tumor virus gene expression by glucocorticoid hormones. Curr. Top. Microbiol. Immunol., 106: 79 – 103, 1983.PubMedGoogle Scholar
  51. 51.
    Ringold, G.M. Steroid hormone regulation of gene expression. Ann. Rev. Pharmacol. Toxicol., 25: 529 – 566, 1985.CrossRefGoogle Scholar
  52. 52.
    Cordingley, M.G., Richard-Foy, H., Lichtler, A., and Hager, G.L., The hormone response element of the MMTV LTR: a complex regulatory region. In: DNA: Protein Interaction and Gene Regulation, University of Texas Medical Branch Series on Biomedical Sciences, (in press) galveston, TX: University of Texas Press, 1986Google Scholar
  53. 53.
    Buetti, E., And Diggelmann, H. Glucocorticoid regulation of mouse mammary tumor virus: identification of a short essential DNA region. EMBO J., 2: 1423 – 1429, 1983.PubMedGoogle Scholar
  54. 54.
    Hynes, N.E., Van Ooyen, A., Kennedy, N., Herrlich, P., Ponta, A., and Groner, B. Subfragments of the LTR cause glucocorticoid responsive expression of MMTV and an adjacent gene. Proc. Natl. Acad. Sci. USA, 80: 3637 – 3641, 1983.PubMedCrossRefGoogle Scholar
  55. 55.
    Ostrowski, M.C., Huang, A.L., Kessel, M., Wolford, R.G., and Hager, G.L. Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus. EMBO J., 3: 1891 – 1899, 1984.PubMedGoogle Scholar
  56. 56.
    Kessel, M., Khoury, G., Ostrowski, M.C., Lichtler, A., and Hager, G.L. The mouse mammary tumor virus LTR contains both positive and negative transcriptional elements. (submitted for publication), 1986.Google Scholar
  57. 57.
    Cordingley, M.G., Berard, D.S., Wolford, R.G., and Hager, G.L. Repression at the mouse mammary tumor virus LTR requires a labile protein. (submitted for publication), 1986.Google Scholar
  58. 58.
    Tanuma, S., Johnson, L.D., and Johnson, G.S. ADP-ribosylation of chromosomal proteins and mouse mammary tumor virus gene expression. J. Biol. Chem., 258: 15371 – 15375, 1983.PubMedGoogle Scholar
  59. 59.
    Johnson, G.S., and Ralhan, R. Glucocorticoid agonists as well as antagonists are effective inducers of mouse mammary tumor virus RNA in mouse mammary tumor cells treated with inhibitors of ADP-ribosylation. (submitted for publication), 1986.Google Scholar
  60. 60.
    Traina-Dorge, V.L., Carr, J.K., Bailey-Wilson, J.E., Elston, R.C., Taylor, b.A., and Cohen, J.C. Cellular genes in the mouse regulate in transthe expression of endogenous mouse mammary tumor viruses. Genetics, 111: 597 – 615, 1985.PubMedGoogle Scholar
  61. 61.
    Muhlbock, O., and Dux, A. Histocompatibility genes (the H-2 complex) and susceptibility to mammary tumor virus in mice. J. Natl. Cancer Inst., 53: 993 – 996, 1974.PubMedGoogle Scholar
  62. 62.
    Carr, J.K., Traina-Dorge, V.L., and Cohen, J.C. Mouse mammary tumor virus gene expression regulated in transby Ips locus. Virology, 147: 210 – 213, 1985.PubMedCrossRefGoogle Scholar
  63. 63.
    Stewart, T.A., Pattengale, P.K., and Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/mycfusion genes. Cell, 38: 627 – 637, 1984.PubMedCrossRefGoogle Scholar
  64. 64.
    Davis, L., Woychick, R., Hennighausen, L., Leder, A., Kuo, A., Tepler, I., Stewart, T., and Leder, P. myconcogene expression in transgenic mice. In: F. Melchers and M. Potter (eds.), Mechanisms of B Cell Neoplasia, pp. 309 – 320. Basle, Switzerland: Editones (Roche), 1985.Google Scholar
  65. 65.
    Stocking, C., Kollek, R., Bergholz, U., and Ostertag, W. Long terminal repeat sequences impart hematopoietic transformation properties to the myeloproliferative sarcoma virus. Proc. Natl. Acad. Sci. USA, 82: 5746 – 5750, 1985.PubMedCrossRefGoogle Scholar
  66. 66.
    Adams, J.M., Harris, A.W., Pinkert, C.A., Corcoran, L.M., Alexander, W.S., Cory, S., Palmiter, R.D., and Brinster, R.L. The c-myconcogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature, 318: 533 – 538, 1985.PubMedCrossRefGoogle Scholar
  67. 67.
    Dickson, C., and Peters, G. ORF—an open reading frame in the MuMTV-LTR. In: M. Rich, J. Hager, and P. Furmanski (eds.), Understanding Breast Cancer: Clinical and Laboratory Concepts, pp. 287 – 301. New York: M. Dekker, 1983.Google Scholar
  68. 68.
    Hayward, W.S., Neel, B.G., and Astrin, S.M. Activation of cellular oncogenes by promoter insertion in ALV-induced lymphoid leukosis. Nature, 296: 475 – 479, 1981.CrossRefGoogle Scholar
  69. 69.
    Payne, G.S., Bishop, J.M., and Varmus, H.E. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature, 295: 209 – 214, 1982.PubMedCrossRefGoogle Scholar
  70. 70.
    Corcoran, L.M., Adams, J.M., Dunn, A.R., and Cory, S. Murine T lymphomas in which the cellular myconcogene has been activated by retroviral insertion. Cell, 37: 113 – 122, 1984.PubMedCrossRefGoogle Scholar
  71. 71.
    Cole, M.D. Regulation and activation of c-myc. Nature, 318: 510 – 511, 1985.PubMedCrossRefGoogle Scholar
  72. 71.
    Cole, M.D. Regulation and activation of c-myc. Nature, 318: 510 – 511, 1985.PubMedCrossRefGoogle Scholar
  73. 73.
    Schwartz, M.S., Jones, R.F., and McGrath, C.M. Differential organization of MMTV genes in normal and hyperplastic mammary tissue. J. Cell Biol., 99: 139a, 1984.Google Scholar
  74. 74.
    Slagle, B.L., Wheeler, D.A., Hager, G.L., Medina, D., and Butel, J.S. Molecular basis of altered mouse mammary tumor virus expression in the D-2 hyperplastic alveolar nodule line of BALB/c mice. Virology, 143: 1 – 15, 1985.PubMedCrossRefGoogle Scholar
  75. 75.
    Gray, D.A., McGrath, C.M., Jones, R.F., and Morris, V.L. A common mouse mammary virus integration site in chemically induced precancerous mammary hyperplasias. Virology, 148: 360 -368, 1986.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith, G.H., Young, L.J.T., Benjamini, E., Medina, D., and Cardiff, R.D. Proteins antigenically related to peptides encoded by the mouse mammary tumor virus long terminal repeat sequence are associated with intracytoplasmic A particles. (submitted for publication), 1986.Google Scholar
  77. 77.
    Arthur, L.O., Long, C.W., Smith, G.H., and Fine, D.L. Immunological characterization of the low-molecular-wight DNA binding protein of mouse mammary tumor virus. Int. J. Cancer, 22: 433 – 440, 1978.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith, G.H., Mirski, M.A., and Arthur, L.O. DNA binding and unwinding activities associated with intracytoplasmic A particles isolated from mouse mammary tumors. J. Gen. Virol., 49: 263 – 272, 1980.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith, G.H., and Wivel, N.A. Isolation and partial characterization of intracytoplasmic A particles. Virology, 48: 270 – 274, 1972.PubMedCrossRefGoogle Scholar
  80. 80.
    Tanaka, H., Tamura, A., and Tsujimura, D. Properties of intracytoplasmic A particles purified from mouse tumors. Virology, 49: 61 – 77, 1972.PubMedCrossRefGoogle Scholar
  81. 81.
    Smith, G.H., and Wivel, N.A. Intracytoplasmic A particles: mouse mammary tumor virus cores? J. Virol., 11: 575 – 584, 1973.PubMedGoogle Scholar
  82. 82.
    Smith, G.H., and Lee, B.K. Mouse mammary tumor virus polypeptide precursors in intracytoplasmic A particles. J. Natl. Cancer Inst., 55: 493–496, 1975,PubMedGoogle Scholar
  83. 83.
    Tanaka, H. Precursor-product relationship between non-glycosylated polypeptides of A and B particles purified from mouse tumors. Virology, 76: 835 – 850, 1977.PubMedCrossRefGoogle Scholar
  84. 84.
    Smith, G.H. Evidence for a precursor-product relationship between intracytoplasmic A particles and mouse mammary tumor virus cores. J. Gen. Virol., 41: 193 – 200, 1978.PubMedCrossRefGoogle Scholar
  85. 85.
    Kohno, M., and Tanaka, H. Characterization of an RNA-directed DNA polymerase found in association with murine intracytoplasmic A particles. J. Virol., 22: 273 – 280, 1977.PubMedGoogle Scholar
  86. 86.
    Smith, G.H., Longfellow, D.G., and Nixon, J.W. Autoradiographic evidence for the association of DNA with intracytoplasmic A particle inclusions in situ. J. Natl. Cancer Inst., 55: 1413 – 1417, 1975.PubMedGoogle Scholar
  87. 87.
    Michalides, R., Nusse, R., Smith, G.H., Zotter, S.C., and Muller, M. Relationship between nucleic acids associated with intracytoplasmic A particles and mouse mammary tumor virus RNA. J. Gen. Virol., 37: 511 – 521, 1977.CrossRefGoogle Scholar
  88. 88.
    Henry, T.J., and Smith, G.H. Molecular relationship of the DNA and RNA of intracytoplasmic A particles to mouse and mammary tumor virus genomes. J. Gen. Virol., 45: 341 – 350, 1979.PubMedCrossRefGoogle Scholar
  89. 89.
    Boeke, J.D., Garfinkel, D.J., Styles, C.A., and Fink, G.R. Ty elements transpose through an RNA intermediate. Cell, 40: 491 – 500, 1985.PubMedCrossRefGoogle Scholar
  90. 90.
    Garfinkel, D.J., Boeke, J.D., and Fink, G.R. Ty element transposition: reverse transcriptase and virus-like particles. Cell, 42: 507 – 518, 1985.PubMedCrossRefGoogle Scholar
  91. 91.
    Smoller, C.G., Pitelka, D.R., and Bern, H.A. Cytoplasmic inclusion bodies in Cortisol-treated mammary tumors of C3H/Crgl mice. J. Biophys. Biochem. Cytol., 9: 915 – 920, 1961.PubMedCrossRefGoogle Scholar
  92. 92.
    Gonda, M.A., Arthur, L.O., Zeve, V.H., Fine, D.L., and Nagashima, K. Surface localization of virus production on glucocorticoid-stimulated oncorna-virus-producing mouse mammary tumor cell line by scanning electron microscopy. Cancer Res., 36: 1084 – 1093, 1976.PubMedGoogle Scholar
  93. 93.
    Clare, J., and Farabaugh, P. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA, 82: 2829 – 2833, 1985.PubMedCrossRefGoogle Scholar
  94. 94.
    Medina, D. Preneoplastic lesions in mouse mammary tumorigenesis. In: H. Busch (ed.), Methods in Cancer Research, Vol. 7, pp. 3 – 53. New York: Academic Press, 1973.Google Scholar
  95. 95.
    Medina, D. Preneoplasia in breast cancer. In: W. McGuire (ed.), Breast Cancer, Vol. 2, pp. 47 – 102. New York: Plenum Press, 1978.Google Scholar
  96. 96.
    Daniel, C.W., Aidells, B.D., Medina, D., and Faulkin, L.J. Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation. Fed. Proc., 34: 64 – 67, 1975.PubMedGoogle Scholar
  97. 97.
    DeOme, K.B., Miyamoto, M., Osborn, R.C., Guzman, R.C., and Lum, K. Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/c f C3H mice. Cancer Res., 38: 2103 – 2111, 1978.PubMedGoogle Scholar
  98. 98.
    Cardiff, R.D., Fanning, T.G., Morris, D.W., Ashley, R.L., and Faulkin, L.J. Restriction endonuclease studies of hyperplastic outgrowth lines from BALB/cf C3H mouse hyperplastic mammary nodules. Cancer Res., 41: 3024 – 3029, 1981.PubMedGoogle Scholar
  99. 99.
    Cardiff, R.D., Morris, D.W., and Yound, L.J.T. Alteration of acquired mammary tumor virus DNA during mammary tumorigenesis in BALB/cf C3H mice. J. Natl. Cancer Inst., 71: 1011 – 1019, 1983.PubMedGoogle Scholar
  100. 100.
    Smith, G.H., Pauley, R.J., Socher, S.H., and Medina, D. Chemical carcinogenesis in C3H/StWi mice, a worthwhile experimental model for breast cancer. Cancer Res., 38: 4504 – 4509, 1978.PubMedGoogle Scholar
  101. 101.
    Smith, G.H., Vonderhaar, B.K., Graham, D.G., and Medina, D. Expression of pregnancy-specific genes in preneoplastic mouse mammary tissues from virgin mice. Cancer Res., 44: 3426 – 3437, 1984.PubMedGoogle Scholar
  102. 102..
    Smith, G.H., Teramoto, Y.A., and Medina, D. Hormones, chemicals and proviral gene expression as contributing factors during mammary carcinogenesis in C3H/StWi mice. Int. J. Cancer 27: 81 – 86, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Gilbert H. Smith
    • 1
  1. 1.Division of Cancer Biology and DiagnosisNational Cancer Institute National Institutes of HealthUSA

Personalised recommendations