Skip to main content

Hormonal Control of Mouse Mammary Tumor Virus Transcription

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

Mouse mammary tumor virus (MMTV) is a RNA-containing tumor virus that causes mammary cancer in mice. MMTV has a life cycle similar to that of other characterized retroviruses, yet MMTV is not completely analogous to the other viruses (1). Some of its unique features have attracted considerable attention in the past few years. First, MMTV transcription is regulated by glucocorticoid hormones. The isolation of MMTV proviruses by gene cloning followed by their transfer into cultured cells has allowed major insights into the mechanism of steroid hormone action (2,3). Second, MMTV belongs to the group of retroviruses that do not carry an oncogene. Recent results suggest that the transformation of mammary gland cells is related to the integration site of the MMTV viral DNA in the host genome. Thus, MMTV most likely transforms cells via insertional mutagenesis (4,5). In this article we will limit our discussion to experiments concerning the hormonal control of MMTV transcription. We will show that glucocorticoid as well as gonadal steroid hormones can enhance MMTV transcription. The role which MMTV plays in mammary tumor formation will be described in other chapters in this book

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss, R., Teich, N., Varmus, H., and Coffin, J. (eds). RNA Tumor Viruses. Cold Spring Harbor Laboratory, 1984.

    Google Scholar 

  2. Hynes, N.E., Groner, B., and Michalides, R. Mouse mammary tumor virus: transcriptional control and involvement in tumorigenesis. Adv. Cancer Res. 41: 155 – 183, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Groner, B., Salmons, B., Gunzburg, W.H., Hynes, N.E., and Ponta, H. Expression of proviral DNA of mouse mammary tumor virus and its transcriptional control sequences. In: N. Maclean (ed.), Oxford Surveys on Eukaryotic Genes, pp. 87–110. Oxford, Oxford University Press, 1984.

    Google Scholar 

  4. Nusse, R., and Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99 – 109, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Peters, G., Brookes, S., Smith, R., and Dickson, C. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for a provirus integration in mammary tumors. Cell 33: 369 – 377, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Owens, R.B., and Hackett, A.J. Tissue culture studies of mouse mammary tumor cells and associated viruses. J. Natl. Cancer Inst. 49: 1321 – 1332, 1972.

    PubMed  CAS  Google Scholar 

  7. Fine, D.L., Plowman, J.K., Kelley, S.P., Arthur, L.O., and Hillman, E.A. Enhanced production of mouse mammary tumor virus in dexamethasone treated, 5-iododeoxyuridein stimulated tumor cells in culture. J. Natl. Cancer Inst. 52: 1881 – 1886, 1974.

    PubMed  CAS  Google Scholar 

  8. Parks, W.P., Scolnick, E.M., and Kozikowski, E.H. Dexamethasone stimulation of murine mammary tumor expression: A tissue culture source of virus. Science 184: 158 – 160, 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Dickson, C., Haslam, S., and Nandi, S. Conditions for optimal MTV synthesis in vitroand the effect of steroid hormones on virus production. Virology 62: 242 – 252, 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Vaidya, A.B., Lasfargues, E.Y., Heubel, G., Lasfargues, J.C., and Moore, D.H. Murine mammary tumor virus: Characterization of infection of nonmurine cells. J. Virol. 18: 911 – 917, 1976.

    PubMed  CAS  Google Scholar 

  11. Ringold, G.M., Cardiff, R.D., Varmus, H.E., and Yamamoto, K.R. Infection of cultured rat hepatoma cells by mouse mammary tumor virus. Cell 10: 11 – 18, 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Varmus, H.E., Ringold, G., and Yamamoto, H.R. Regulation of mouse mammary tumor virus gene expression by glucocorticoid hormones. In: J.D. Baxter, G.G. Rousseau (eds.), Glucocorticoid hormone action, pp. 253–278. Berlin, Heidelberg, New York, Springer Verlag, 1979.

    Google Scholar 

  13. Young, H.E., Shih, T.Y., Scolnick, E.M., and Parks, W.P. Steroid induction of mouse mammary tumor virus: Effects upon synthesis and degradation of viral RNA. J. Virol. 21: 139 – 146, 1977.

    PubMed  CAS  Google Scholar 

  14. Ringold, J.M., Yamamoto, K.R., Bishop, J.M., and Varmus, H.E. Glucocorticoid stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA. Proc. Natl. Acad. Sci. USA 74: 2879 – 2883, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Ucker, D.S., Ross, S.R., and Yamamoto, K.R. Mammary tumor virus DNA contains sequences required for its hormone regulated transcription. Cell 27: 257 – 266, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Hynes, N.E., Kennedy, N., Rahmsdorf, U., and Groner, B. Hormone responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells. Proc. Natl. Acad. Sci. USA 78: 2038 – 2042, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Hynes, N.E., Rahmsdorf, U., Kennedy, N., Fabiani, L., Michalides, R., Nusse, R., and Groner, B. Structure, stability, methylation, expression and glucocorticoid induction of endogenous and transfected proviral genes of mouse mammary tumor virus in mouse fibroblasts. Gene 16: 307 – 317, 1981.

    Article  Google Scholar 

  18. Buetti, E., and Diggelmann, H. Cloned mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones. Cell 23: 335 – 345, 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Diggelmann, H., Vessaz, A.L., and Buetti, E. Cloned endogenous mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones. Virology 122: 332 – 341, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Majors, J.E., and Varmus, H.E. Nucleotide sequences at host proviral junctions for mouse mammary tumor virus. Nature 289: 253 – 258, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Klemenz, R., Reinhardt, M., And Diggelmann, H. Sequence determination of the 3’ end of mouse mammary tumor virus RNA. Mol. Biol. Rep. 7: 123 – 126, 1981.

    CAS  Google Scholar 

  22. Donehower, L.A., Huang, A.L., and Hager, G.L. Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy. J. Virol. 37: 226 – 238, 1981.

    PubMed  CAS  Google Scholar 

  23. Kennedy, N., Knedlitschek, G. Groner, B., Hynes, N.E., Herrlich, P., Michalides, R., and van Ooyen, A. The long terminal repeats of an endogenous mouse mammary tumor virus are identical and contain a long open reading frame extending into adjacent sequences. Nature 295: 622 – 624, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Fasel, N.K., Pearson, E.K., Buetti, E., and Diggelmann, H. The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long coding sequence and signals for hormonally regulated transcription. EMBO Journal 1: 3 – 7, 1982.

    PubMed  CAS  Google Scholar 

  25. Huang, A.L., Ostrowski, M.C., Berard, D., and Hager, G.L. Glucocorticoid regulation of the HaMSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27: 245 – 255, 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Lee, F., Mulligan, R., Berg, P., and Ringold, G. Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumor virus chimeric plasmids. Nature 294: 228 – 232, 1981

    Article  PubMed  CAS  Google Scholar 

  27. Groner, B., Kennedy, N., Rahmsdorf, U., Herrlich, P., van Ooyen, A., and Hynes, N.E. In: J.E. Dumont, J. Nunez and G. Schultz (eds.), Hormones and Cell Regulation, 6: 217–228. Amsterdam: Elsevier,1982

    Google Scholar 

  28. Chapman, A.B., Costello, F.L., and Ringold, G.M. Amplification and hormone-regulated expression of a mouse mammary tumor virus Eco gpt fusion plasmid in mouse 3T6 cells. Mol. Cell Biol. 3: 1421 – 1429, 1983.

    PubMed  CAS  Google Scholar 

  29. Buetti, E., and Diggelmann, H. Glucocorticoid regulation of mouse mammary virus: Identification of a short essential DNA region. EMBO Journal 2: 1423 – 1429, 1983.

    PubMed  CAS  Google Scholar 

  30. Hynes, N.E., van Ooyen, A., Kennedy, N., Herrlich, P., Ponta, H., and Groner, b. Subfragments of the long terminal repeat cause glucocorticoid responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc. Natl. Acad. Sci. USA 80: 3632 – 3641, 1983.

    Article  Google Scholar 

  31. Majors, J., and Varmus, H.E. A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked heterologous gene. Proc. Natl. Acad. Sci. USA 80: 5866 – 5870, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Ponta, H., Kennedy, N., Skroch, P., Hynes, N.E., and Groner, B. Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc. Natl. Acad. Sci. USA 82: 1020 – 1024, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, F., Hall, C.V., Ringold, G.M., Dobson, D.E., Luk, H., and Jakob, P.E. Functional analysis of the steroid hormone control region of mouse mammary tumor virus. Nucleic Acids Research 12: 4191 – 4206, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Khoury, G., and Gruss, P. Enhancer Elements. Cell 33: 313 – 314, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Payvar, F., Wrange, O., Carlstedt-Duke, J., Okret, S., Gustafsson, J.A., and Yamamoto, K. Purified glucocorticoid receptors bind selectively in vitroto a cloned DNA fragment whose transcription is regulated by glucocorticoids in vitro. Proc. Natl. Acad. Sci. USA 78: 6628 – 6632, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Giesse, S., Scheidereit, C., Westphal, H.M., Hynes, N.E., Groner, B., and Beato, M. Glucocorticoid receptors recognize DNA sequences in and around murine mammary tumor virus DNA. EMBO Journal 1: 1613 – 1619, 1982.

    CAS  Google Scholar 

  37. Govindan, M.V., Spiess, E., and Majors, J. Purified glucocorticoid receptor hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long-terminal repeats in vitro. Proc. Natl. Acad. Sci. USA 79: 5157 – 5161, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Pfahl, M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region. Cell 31: 475 – 482, 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Pfahl, M., McGinnis, D., Hendrick, M., Groner, B., and Hynes, N.E. Correlation of glucocorticoid receptor binding sites of MMTV proviral DNA with hormone inducible transcription. Science 222: 1341 – 1343, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Scheidereit, C., Geisse, S., Westphal, H.M., and Beato, M. The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus. Nature 30: 749 – 752, 1983.

    Article  Google Scholar 

  41. Scheidereit, C., and Beato, M. Contacts between hormone receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. Proc. Natl. Acad. Sci. USA 81: 3029 – 3033, 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Karin, M., Haslinger, A., Holtgreve, H., Richards, R.I., Krauter, P., Westphal, H.M., and Beato, M. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionine-IIA gene. Nature 308: 513–519

    Google Scholar 

  43. van Nie, R., and De Moes, J. Development of a congenic line of the GR mouse strain without early mammary tumors. Int. J. Cancer 20: 588 – 594, 1977.

    Article  PubMed  Google Scholar 

  44. Michalides, R., van Deemter, L., Nusse, R., and van Nie, R. Identification of the Mtv-2 gene responsible for the early appearance of mammary tumors in the GR mouse by nucleic acid hybridization. Proc. Natl. Acad. Sci. USA 75: 2368–2372

    Google Scholar 

  45. Michalides, R., van Nie, R., Nusse, R., Hynes, N.E., and Groner, B. Mammary tumor induction loci in GR and DBAf mice contain one provirus of the mouse mammary tumor virus. Cell 23: 165 – 173, 1981.

    Article  PubMed  CAS  Google Scholar 

  46. van Nie, R., and Dux, A. Biological and morphological characteristics of mammary tumors in GR mice. J. Natl. Cancer Inst. 46: 885 – 893, 1971.

    PubMed  Google Scholar 

  47. van Nie, R. Mammary tumorigenesis in the GR mouse strain. In:Hilger, J., Sluyter, M. (eds.), Mammary tumors in the mouse, pp. 201–266. Amsterdam, Oxford, New York, Elsevier/North-Holland, 1981.

    Google Scholar 

  48. Southern, P.J., and Berg,P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genetics 1: 327 – 341, 1982.

    CAS  Google Scholar 

  49. Horwitz, K.B., Zava, D.T., Thilager, A.K., Jensen, E.M., and McGuire, W.L. Steroid receptor analysis of 9 human breast cancer cell lines. Cancer Res. 38: 2434 – 2437, 1978.

    PubMed  CAS  Google Scholar 

  50. Chalbos, D., and Rochefort, H. Dual effect of the progestin R5020 on protein released by the T47D human breast cancer cell. J. Biol. Chem. 259: 1231 – 1238, 1984.

    PubMed  CAS  Google Scholar 

  51. Wilson, J.D., and Griffin, J.E. Mutations that impair androgen action. Trends in Genetics 1: 335 – 339, 1985.

    Article  CAS  Google Scholar 

  52. Gorman, C., Padmanabhan, R., and Howard, B.H. High efficiency DNA-mediated transformation of primate cells. Science 221: 551 – 553, 1983.

    Article  PubMed  CAS  Google Scholar 

  53. Von der Ahe, D., Janich, S., Scheidereit, C., Renkawitz, R., Schutz, G., and Beato, M. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313: 706 – 709, 1985.

    Article  PubMed  Google Scholar 

  54. Minesita, T., and Yamaguchi, K. An androgen dependent tumor derived from a hormone independent spontaneous tumor of a female mouse. Steroids 4: 815 – 830, 1964.

    Article  Google Scholar 

  55. Minesita, T., and Yamaguchi, K. An androgen dependent mouse mammary tumor. Cancer Res. 25: 1168 – 1177, 1965.

    PubMed  CAS  Google Scholar 

  56. Darbe, P., Dickson, C., Peters, G., Page, M., Curtis, S., and King, R.J.B. Androgen regulation of cell proliferation and expression of viral sequences in mouse mammary tumor cells. Nature 303: 431 – 433, 1983.

    Article  Google Scholar 

  57. Moen, R.C., and Palimiter, R.D. Changes in hormone responsiveness of chick oviduct during primary stimulation with estrogen. Dev. Biol. 78: 450 – 463, 1980.

    Article  PubMed  CAS  Google Scholar 

  58. Higgins, S.J., and Parker, M.G. Androgenic regulation of generalized and specific responses in accessory sexual tissues of the male rat. Biochemical Actions of Hormones 7: 287 – 309, 1980.

    CAS  Google Scholar 

  59. Ernest, M.J., and Feigelson, P. Multihormonal control of tyrosine amino-transferase in isolated liver cells. In: Baxter, J.D., and Rousseau, G.G. (eds.), Glucocorticoid hormone action, pp. 219–241. Berlin, Heidelberg, New York, Springer, Verlag, 1979.

    Google Scholar 

  60. Topper, Y.J., and Freeman, C.S. Multiple hormone interactions in the development biology of the mammary gland. Physiol. Rev. 60: 1049 – 1106, 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Hynes, N.E., Groner, B., Cato, A., Ponta, H. (1987). Hormonal Control of Mouse Mammary Tumor Virus Transcription. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics