Skip to main content

On the Mechanism of Carcinogenesis by Mouse Mammary Tumor Virus

  • Chapter

Abstract

Mouse mammary tumor virus (MMTV) is a classic example of a latently oncogenic retrovirus, its life cycle and tumorigenicity showing many parallels with the leukemia viruses of domestic cats, chickens and laboratory mice (1). Although indisputably linked to the development of particular cancers, such viruses do not themselves encode the oncogenes responsible for cell transformation. Epidemiologically, they are therefore very different from the various isolates of acutely oncogenic retroviruses, in which cellular proto-oncogene sequences have become transduced within the viral genomes (2). While the latter transform cells rapidly and efficiently, both in vitroand in vivo, the latently oncogenic viruses have little or no influence on cultured cells, and in the animal there is characteristically a long delay between exposure of the virus and overt manifestations of neo-plasia. With MMTV, mice are naturally infected by milk-borne virus at birth, yet tumors rarely arise before about 4 months of age, the norm being closer to 6 to 9 months (3,4; and chapter by Slagle and Butel). Most female mice are detectably viremic at pregnancy, and shed high levels of virus in the milk, but although a high proportion of the mammary epithelial cells can become productively infected, they remain apparently normal. Indeed, only very rare infected cells undergo transformation and expand clonally to dominate the resultant tumors, suggesting some stochastic process as opposed to a direct influence of a viral gene product

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teich, N., Wyke, J., Mak, T., Bernstein, A., and Hardy, W. Pathogenesis of retrovirus-induced disease. In:R. Weiss, N. Teich, H. Varums, and J. Coffin (eds.), Molecular Biology of Tumor Viruses, Part III, RNA Tumor Viruses, p. 785–998. Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  2. Bishop, J.M. Cellular oncogenes and retroviruses. Ann. Rev. Biochem. 52: 301 – 354, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Cardiff, R.D., and Young, L.J.T. Mouse mammary tumor biology: A new synthesis. In:M. Essex, G. Todaro, and H. zur Hausen (eds.), Viruses in Naturally Occurring Cancers, p. 1105–1114. Cold Spring Harbor Laboratory, 1980.

    Google Scholar 

  4. Moore, D.H., Long, C.A., Vaidya, A.B., Sheffield, J.B., Dion, A.S., and Lafargues, E.Y. Mammary tumor viruses. Adv. Cancer Res. 29: 347 – 418, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, J.C., Shank, P.R., Morris, V.L., Cardiff, R., and Varmus, H.E. Integration of the DNA of mouse mammary tumor virus in virus-in-fected normal and neoplasic tissue of the mouse. Cell 16: 337 – 345, 1979.

    Google Scholar 

  6. Cohen, J.C. and Varmus, H.E. Proviruses of mouse mammary tumor virus in normal and neoplastic tissues of GR and C3H+ mouse strains. J. Virol. 35: 298 – 305, 1980.

    PubMed  CAS  Google Scholar 

  7. Fanning, T.G., Puma, J.P., and Cardiff, R.D. Selective amplification of mouse mammary tumor virus in mammary tumors of GR mice. J. Virol. 36: 109 – 114, 1980.

    PubMed  CAS  Google Scholar 

  8. Groner, B., Buetti, E., Diggelmann, H., and Hynes, N.E. Characterization of endogenous and exogenous mouse mammary tumor virus proviral DNA with site-specific molecular clones. J. Virol. 36: 734 – 745, 1980.

    PubMed  CAS  Google Scholar 

  9. Nusse, R. and Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99 – 109, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Peters, G., Brookes, S., Smith, R., and Dickson, C. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for pro-virus integration in mammary tumors. Cell 33: 369 – 377, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Varmus, H. Replication of retroviruses. In: R. Weiss, N. Teich, H. Varmus, and J. Coffin (eds.), Molecular Biology of Tumor Viruses, Part III. RNA Tumor Viruses. p. 268 – 512. Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  12. Varmus, H.E. The molecular genetics of cellular oncogenes. Ann. Rev. Genet. 18: 553 – 612, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Nusse, R., van Ooyen, A., Cox, R., Fung, Y.-K.T., and Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131 – 136, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Dickson, C., Smith, R., Brookes, S., and Peters, G. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529 – 536, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Garcia, M., Wellinger, R., Versaz, A., and Diggelmann, H. A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/c+ (C3H) mammary and kidney adenocarcinomas. EMBO J. 5: 127 – 134, 1986.

    PubMed  CAS  Google Scholar 

  16. Peters, G., Lee, A.E., and Dickson, C. Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumor virus. Nature 320: 628 – 631, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Peters, G., Kozak, C., and Dickson, C. Mouse mammary tumor virus in-tegration regions int-1and int-2map on different chromosomes. Mol. Cell. Biol. 4: 375 – 378, 1984.

    PubMed  CAS  Google Scholar 

  18. Van Ooyen, A., and Nusse, R. Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein coding domain intact. Cell 39: 233 – 240, 1984.

    Article  PubMed  Google Scholar 

  19. Rijsewijk, F.A.M., van Lohuizen, M., Van Ooyen, A., and Nusse, R. Construction of a retroviral cDNA version of the int-1mammary oncogene and its expression in vitro. Nucleic Acids Res. 14: 693 – 702, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Fung, Y.-K.T., Shackleford, G.M., Brown, A.M.C., Sanders, G.S., and Varmus, H.E. Nucleotide sequence and expression in vitroof cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene. Mol. Cell. Biol. 5: 3337 – 3344, 1985.

    PubMed  CAS  Google Scholar 

  21. Moore, R., Casey, G., Brookes, S., Dixon, M., Peters, G., and Dickson, C. Sequence, topography and protein coding potential of mouse int-2: a putative oncogene activated by mouse mammary tumor virus. EMBO J. In: Press, 1986.

    Google Scholar 

  22. Hayward, W.S., Neel, B.G., and Astrin, S.M. Activation of a cellular oncogene by promoter insertion in ALV induced lymphoid leukosis. Nature 290: 475 – 480, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Fung, Y.-K.T., Fadly, A.M., Crittenden, L.B., and Kung, H.-J. On the mechanism of retrovirus-induced avian lymphoid leukosis: deletion and integration of the proviruses. Proc. Natl. Acad. Sci. USA 81: 34180 – 3422, 1981.

    Google Scholar 

  24. Payne, G.S., Courtneidge, S.A., Crittenden, L.B., Fadly, A.M., Bishop, J.M., and Varmus, H.E. Analysis of avian leukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 23: 311 – 322, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Payne, G.S., Bishop, J.M., and Varmus, H.E. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209 – 214, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Chandler, V.L., Maler, B.A., and Yamamoto. K.R. DNA sequences bound specifically by glucocorticoid receptor in vitrorender a heterologous promoter hormone responsive in vivo. Cell 33: 489 – 499, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Ponta, H., Kennedy, N., Stroch, P., Hynes, N.E., and Groner, B. Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc. Natl. Acad. Sci. USA 82: 1020 – 1024, 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Stewart, T.A., Pattengale, P.K., and Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627 – 637, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Rosen, C.A., Haseltine, W.A., Lenz, J., Ruprecht, R., and Lloyd, M.W. Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. J. Virol. 55: 862 – 866, 1985.

    PubMed  CAS  Google Scholar 

  30. Wasylyk, B., Wasylyk, C., Augereau, P., and Chambon, P. The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32: 503 – 514, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. de Villiers, J., Olsen, L., Banerji, J., and Schaffner, W. Analysis of the transcriptional enhancer effect. In: Cold Spring Harbor Symposia on Quantitative Biology 46: 911 – 919, 1982.

    Google Scholar 

  32. Nilsen, T.W., Maroney, P.A., Goodwin, R.G., Rottman, F.M., Crittenden, L.B., Raines, M.A., and Kung, H. C-erb Bactivation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell 41: 719 – 726, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Shen-Ong, G.L.C., Morse, H.C., Potter, M., and Mushinski, J.F. Two modes of c-mybactivation in virus-induced mouse myeloid tumors. Mol. Cell. Biol. 6: 380 – 392, 1986.

    CAS  Google Scholar 

  34. Zarbl, H., Sukumar, S., Arthur, A., Martin-Zanca, D., and Barbacid, M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rat. Nature 315: 382 – 385, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Peters, G., Lee, A., and Dickson, C. Activation of cellular gene by mouse mammary tumor virus may occur early in mammary tumor development. Nature 309: 273 – 275, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Van Veer, L., van Kessel, A.G., van Heerikhuizen, H., Van Ooyen, A., and Nusse, R. Molecular cloning and chromosomal assignment of the human homolog of int-1, a mouse gene implicated in mammary tumori-genesis. Mol. Cell. Biol. 4: 2532 – 2534, 1984.

    Google Scholar 

  37. Van Ooyen, A., Kwee, V., and Nusse, R. The nucleotide sequence of the human int-1mammary oncogene; evolutionary conservation of coding and non-coding sequences. EMBO J. 4: 2905 – 2909, 1985.

    PubMed  Google Scholar 

  38. Casey, G., Smith, R., McGillivray, D., Peters, G., and Dickson, C. Characterization and chromosome assignment of the mouse homolog of int-2, a potential proto-oncogene. Mol. Cell. Biol. 6: 502 – 510, 1986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Peters, G., Dickson, C. (1987). On the Mechanism of Carcinogenesis by Mouse Mammary Tumor Virus. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics