Skip to main content

Primary Culture Systems for Mammary Biology Studies

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

The importance of hormones in the growth, morphogenesis, differentiation and neoplastic transformation of the mammary gland is well recognized due to a large number of experimentsin vivo (for review see 1). However, the precise nature of hormonal involvement is not clearly understood because of the difficulties in analyzing complex in vivo interactions. The role of growth factors in any of these processes is, perhaps, even less well understood, due in part to the complexity ofin vivo interactions and in part to the general lack of knowledge of the role of growth factors in anyin vivo process. The recent advances relating some viral oncogene products to growth factor receptor variants or growth factor sub-units makes it important to understand more fully the role of these molecules in the processes listed above. Culture systems of various types have been used to try and address these questions and are, theoretically, of great advantage since they allow observations and manipulations of cells and tissues in isolation, where experimental variables can be controlled or minimized. The goal of these investigations is to be able to reproduce in culture a system that mimics the in vivo physiological and pathological phemomena of interest. No individual system completely meets this goal, but recent advances allow a better simulation of some of the processes that occurin vivo. Unfortunately, even those systems which closely mimic the in vivo situation in terms of growth and differentiation cannot yet mimic the process of neoplastic transformation in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topper, Y.J., and Freeman, C.S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60: 1049–1106, 1980.

    PubMed  CAS  Google Scholar 

  2. Daniel, C., and DeOme, K.B. Growth of mouse mammary glandsin vivoafter monolayer culture. Science 149: 634–636, 1965.

    Article  PubMed  CAS  Google Scholar 

  3. Telang, N.T., Banerjee, M.R., Iyer, A.P., and Kundu, A.B. Neoplastic transformation of epithelial cells in whole mammary glandsin vitro. Proc. Natl. Acad. Sci. U.S.A. 76: 5886–5890, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Guzman, R.C., Osborn, R.C., Yang, J., DeOme, K.B., and Nandi, S. Transplantation of mouse mammary epithelial cells grown in primary collagen gel cultures. Cancer Res. 42: 2376–2383, 1982.

    PubMed  CAS  Google Scholar 

  5. Banerjee, M.R. Responses of mammary cells to hormones. International Review of Cytology 47: 1–97, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Dilley, W.G., and Nandi, S. Rat mammary gland differentiationin vitroin the absence of steroids. Science 161: 59–60, 1969.

    Article  Google Scholar 

  7. Dilley, W.G. Morphogenic and mitogenic effects of prolactin on rat mammary glandsin vitro. Endocrinology 88: 514–517, 1971.

    Article  PubMed  CAS  Google Scholar 

  8. Wood, B.G., Washburn, L.L., Mukherjee, K.S., and Banerjee, M.R. Hormonal regulation of lobuloalveolar growth, functional differentiation and regression of whole mammary gland in organ culture. J. Endocrinol. 65: 1–6, 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Ichinose, R.R., and Nandi, S. Lobuloalveolar differentiation in mouse mammary tissuesin vitro. Science 145: 497–498, 1964.

    Article  Google Scholar 

  10. Mehta, N.M., Ganguly, N., Ganguly, R., and Banerjee, M.R. Hormonal modulation of the casein gene expression in a mammogenesis-lactogenesis culture model of the whole mammary gland of the mouse. J. Biol. Chem. 255: 4430–4434, 1980.

    PubMed  CAS  Google Scholar 

  11. Terry, P.M., Banerjee, M.R., and Lui, R.M. Hormone-inducible casein messenger RNA in serum-free organ culture of whole mammary gland. Proc. Natl. Acad. Sci. U.S.A. 74: 2241–2245, 1977.

    Article  Google Scholar 

  12. Ichinose, R.R., and Nandi, S. Influence of hormones on lobuloalveolar differentiation of mouse mammary glandsin vitro. J. Endocrinol. 35: 331–340, 1966.

    Article  PubMed  CAS  Google Scholar 

  13. Kratochwil, K. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. 20: 46–71, 1969.

    Article  PubMed  CAS  Google Scholar 

  14. Tonelli, Q.J., and Sorof, S. Induction of biochemical differentiation in three-dimensional collagen cultures of mammary epithelial cells from virgin mice. Differentiation 22: 195–200, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Tonelli, Q.J., and Sorof, S. Epidermal growth factor requirement for development of cultured mammary gland. Nature 285: 250–252, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Bolander, F.F., Nicholas, K.R., and Topper, Y.J. Retention of glucocorticoid by isolated mammary tissue may complicate interpretation of results from in vitro experiments. Biochem. Biophys. Res. Comm. 91: 247–252, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Banerjee, M.R., Wood, B.G., and Kinder, D.L. Whole mammary gland organ culture: selection of appropriate gland.In Vitro9: 129–133, 1973.

    Article  PubMed  CAS  Google Scholar 

  18. Elias, J.J. Cultivation of adult mouse mammary gland in hormone- enriched synthetic medium. Science 126: 842–844, 1957.

    Article  PubMed  CAS  Google Scholar 

  19. Juergens, W.G., Stockdale, F.E., Topper, Y.J., and Elias, J.J. Hormone-dependent differentiation of mammary glandin vitro. Proc. Natl. Acad. Sci. U.S.A. 54: 629–634, 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Topper, Y.J., Oka, T., and Vonderhaar, B.K. Techniques for studying development of normal mammary epithelial cells in organ culture. Met. Enz. 39: 443–454, 1975.

    Article  CAS  Google Scholar 

  21. Barnawell, E.B. A comparative study of the responses of mammary tissues from several mammalian species to hormonesin vitro. J. Exp. Zool. 160: 189–201, 1965.

    Article  PubMed  CAS  Google Scholar 

  22. Hillman, E.A., Vocci, M.J., Combs, J.W., Sanefuji, H., Robbins, T., Janss, D.H., Harris, C.C., and Trump, B.F. Human breast organ culture studies. In: Harris, C.C., Trump, B.F., and Stoner, G.D. (eds.), Methods in Cell Biology 21B: 79–105, 1980.

    Google Scholar 

  23. Legros, N., and Heuson, J.C. Hormone action in breast cancer explants.In: Sharma, R.K., and Criss, W.E. (eds.), Endocrine control in neoplasia, pp. 169–187. New York: Raven Press, 1978.

    Google Scholar 

  24. Koyama, H., Sinha, D., and Dao, T.L. Effects of hormones and 7,12-dimethylbenz(a)anthracene on rat mammary tissue grown in organ culture. J. Natl. Cancer Inst. 48: 1671–1680, 1972.

    PubMed  CAS  Google Scholar 

  25. Hallowes, R.C., Wang, D.Y., and Lewis, D.J. The lactogenic effects of prolactin and growth hormone on mammary gland explants from virgin and pregnant Sprague-Dawley rats. J. Endocrinol. 57: 253–264, 1973.

    Article  PubMed  CAS  Google Scholar 

  26. Pasteels, J., Heuson, J., Heuson-Stiennon, J., and Legros, N. Effects of insulin, prolactin, progesterone, and estradiol and DNA synthesis in organ culture of 7,12-dimethylbenz(a)-anthracene- induced rat mammary tumors. Cancer Res. 36: 2162–2170, 1976.

    PubMed  CAS  Google Scholar 

  27. Ono, M., and Oka, T. The differential actions of Cortisol on the accumulation of alpha-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19: 473–480, 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Stockdale, F.E., and Topper, Y.J. The role of DNA synthesis and mitosis in hormone-dependent differentiation. Proc. Natl. Acad. Sci. U.S.A. 56: 1283–1289, 1966.

    Article  PubMed  CAS  Google Scholar 

  29. Owens, I.S., Vonderhaar, B.K., and Topper, Y.J. Concerning the necessary coupling of development to proliferation of mouse mammary epithelial cells. J. Biol. Chem. 248: 472–477, 1973.

    PubMed  CAS  Google Scholar 

  30. Van Bogaert, L.J. The proliferative behavior of the human adult mammary epithelium. Acta Cytologica 23: 252–257, 1979.

    Google Scholar 

  31. Bolander, F.F. and Topper, Y.J. Loss of differentiative potential of the mammary gland in ovariectomized mice: identification of a biochemical lesion. Endocrinology 108: 1649–1653, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Friedberg, S.H., Oka, T. and Topper, Y.J. Development of insulin-sensitivity by mouse mammary glandin vitro. Proc. Natl. Acad. Sci. U.S.A. 67: 1493–1500, 1970.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson, G.D., Woods, K.L., Walker, R.A. and Howell, A. Effect of prolactin on lactalbumin production by normal and malignant human breast tissue in organ culture. Cancer Res. 40: 486–489, 1980.

    PubMed  CAS  Google Scholar 

  34. Kleinberg, D.I., Todd, J., and Niemann, W. Prolactin stimulation of alpha-lactalbumin in normal primate mammary gland. J. Clin. Endocrinol. Metab. 37: 435–441, 1978.

    Article  Google Scholar 

  35. Vonderhaar, B.K., Owens, I.S., and Topper, Y.J. An early effect of prolactin on the formation of alpha-lactalbumin by mouse mammary epithelial cells. J. Biol. Chem. 248: 467–471, 1973.

    PubMed  CAS  Google Scholar 

  36. Bolander, F.F., and Topper, Y.J. Loss of differentiative potential of the mammary gland in ovariectomized mice: prevention and reversibility of the defect. Endocrinology 107: 1281–1285, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Sankaran, L., Qasba, P., and Topper, Y.J. Effects of estrogen-depeletion on rat casein gene expression. Biochem. Biophys. Res. Comm. 125: 682–689, 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Henderson, I.C., and Canellos, G.P. Cancer of the breast. N. Eng. J. Med. 302: 17–30, 1980.

    Article  CAS  Google Scholar 

  39. Das, N.K., Hosick, H.L., and Nandi, S. Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. J. Natl. Cancer Inst. 52: 849–855, 1974.

    PubMed  Google Scholar 

  40. Feldman, M.K., and Wong, D.L. The effects of various mammalian sera on attachment efficiency and thymidine incorporation in primary cultures of mouse mammary epithelial cells.In Vitro13: 275–279, 1977.

    Article  PubMed  CAS  Google Scholar 

  41. Klevjer-Anderson, P., and Buehring, G.C. Effect of hormones on growth rates of malignant and non-malignant human mammary epithelia in cell culture.In Vitro16: 491–501, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen, L., Tsuang, J., and Chan, P. Characteristics of rat normal mammary epithelial cells and dimethylbenzanthracene-induced mammary adenocarcinoma cells grown in monolayer culture.In Vitro10: 51–62, 1974.

    Article  PubMed  CAS  Google Scholar 

  43. Richards, J. and Nandi, S. Primary culture of rat mammary epithelial cells. I. Effects of plating density, hormones and serum on DNA synthesis. J. Natl. Cancer Inst. 61: 765–771, 1978.

    PubMed  CAS  Google Scholar 

  44. Hallowes, R., Rudland, P., Hawkins, R., Lewis, D., Bennett, D. and Durbin, H. Comparison of the effects of hormones on DNA synthesis in cell culture of non-neoplastic and neoplastic mammary epithelium from rats. Cancer Res. 37: 2492–2504, 1977.

    PubMed  CAS  Google Scholar 

  45. Rudland, P., Hallowes, R., Durbin, H., and Lewis, D. Mitogenic activity of pituitary hormones on cell cultures of normal and carcinogen-induced tumor epithelium from rat mammary glands. J. Cell Biol. 73: 561–577, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Kidwell, W., Bano, M., and Salomon, D. The growth of normal mammary epithelium on collagen in serum-free medium.In: Barnes, D. and Sato, G. (eds.) Growth of cells in hormonally defined medium. New York: Alan R. Liss, Inc., 1984.

    Google Scholar 

  47. Liotta, L., Wicha, M., Foidart, J., Rennard, S., Garbisa, S., and Kidwell, W. Hormonal requirements for basement membrane collagen deposition by cultured rat mammary epithelium. Lab Invest. 41: 511–518, 1980.

    Google Scholar 

  48. Ethier, S.P. Primary culture and serial passage of normal and carcinogen treated rat mammary epithelial cellsin vitro. J. Natl. Cancer Inst. 74: 1307–1318, 1985.

    PubMed  CAS  Google Scholar 

  49. Cho-Chung, Y., Clair, T. and Shepheard, C. Arrest of hormone-dependent mammary cancer growthin vivoandin vitroby cholera toxin. Cancer Res. 43: 1473–1476, 1983.

    PubMed  CAS  Google Scholar 

  50. McGrath, C. Cell organization and responsiveness to hormonesin vitro: genesis of domes in mammary cell cultures. Am. Zool. 15: 231–236, 1975.

    Google Scholar 

  51. Lasfargues, E. and Morre, D. A method for the continuous cultivation of mammary epithelium.In Vitro 7: 21–25, 1971.

    Article  PubMed  CAS  Google Scholar 

  52. Wiepjes, G. and Prop, F. Improved method for preparation of singlecell suspensions from mammary gland of adult virgin mouse. Exp. Cell Res. 61: 451–456, 1970.

    Article  PubMed  CAS  Google Scholar 

  53. Lasfargues, E.Y. and Ozzello, L. Cultivation of human breast carcinomas. J. Natl. Cancer Inst. 21: 1131–1147, 1958.

    PubMed  CAS  Google Scholar 

  54. Buehring, G.C. Culture of human mammary epithelial cells: keeping abreast with a new method. J. Natl. Cancer Inst. 49: 1433–1434, 1972.

    PubMed  CAS  Google Scholar 

  55. Cailleau, R., Mackay, B., Young, R.K. and Reeves, W.J. Jr. Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res. 34: 801–809, 1974.

    PubMed  CAS  Google Scholar 

  56. Levine, J.F. and Stockdale, F.E. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp. Cell Res. 151: 112–122, 1984.

    Article  PubMed  CAS  Google Scholar 

  57. Ehman, U.K., Peterson, W.D., Jr. and Misfeldt, D.S. To grow mouse mammary epithelial cells in culture. J. Cell Biol. 98: 1026–1032, 1984.

    Article  Google Scholar 

  58. Levine, J.F. and Stockdale, F.E. Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell Biol. 100: 1415–1422, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Emerman, J.T. and Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes.In Vitro13: 316–328, 1977.

    Article  PubMed  CAS  Google Scholar 

  60. Ray, D.B., Horst, I.A., Jansen, R.W., and Kowal, J. Normal mammary cells in long term culture. I. Development of hormone-dependent functional monolayer cultures and assay of alpha-lactalbumin production. Endocrinology 108: 573–583, 1981.

    Article  PubMed  CAS  Google Scholar 

  61. Ray, D.B., Jansen, R.W., Horst, I.A., Mills, N.C. and Kowal, J. A complex non-coordinate regulation of alpha-lactalbumin and 25 K beta-casein by corticosterone, prolactin, and insulin in long term cultures of normal rat mammary cells. Endocrinology 118: 393–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Richards, J. and Nandi, S. Neoplastic transformation of rat mammary cells exposed to 7,12-dimethylbenz(a)anthracene or N-nitroso-methylurea in cell culture. Proc. Natl. Acad. Sci. U.S.A. 75: 3836–3841, 1978.

    Article  PubMed  CAS  Google Scholar 

  63. Stoker, M.G.P., Pigott, P., Taylor-Papadimitriou, J. Response to epidermal growth factors of cultured human mammary epithelial cells from benign tumors. Nature 264: 764–766, 1976.

    Article  PubMed  CAS  Google Scholar 

  64. Taylor-Papadimitriou, J. and Shearer, T.R. Some properties of cells cultured from early-lactation human milk. J. Natl. Cancer Inst. 58: 1563–1571, 1977.

    PubMed  CAS  Google Scholar 

  65. Gaffney, E.V., Polanowski, F.P., Blackburn, S.E., Lambiase, J.T. and Burke, R.E. Cultures of normal human mammary cells. Cell Differentiation 5: 69–81, 1976.

    Article  PubMed  CAS  Google Scholar 

  66. Stampfer, M. Growth of human mammary epithelial cells in monolayer culture. In: Barnes, D.W., Sirbasku, D.A. and Sato, G.H. (eds.), Cell culture methods for molecular and cell biology 2: 171–182, 1984.

    Google Scholar 

  67. Enami, J., Enami, S., and Koga, M. Growth of normal and neoplastic mouse mammary epithelial cells in primary culture: stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74: 845–853, 1983.

    PubMed  CAS  Google Scholar 

  68. McGrath, C.M. and Soule, H.D. Calcium regulation of normal human mammary epithelial cell growth in culture.In Vitro 20: 652–662, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Smith, H.S., Lan, S., Ceriani, R., Hackett, A.J. and Stampfer, M.R. Clonal proliferation of cultured non-malignant and malignant human breast epithelia. Cancer Res. 41: 4637–4643, 1981.

    PubMed  CAS  Google Scholar 

  70. Kirkland, W.L., Yang, N.S., Jorgensen, T., Longley, C. and Furmanski P. Growth of normal and malignant human mammary epithelial cells in culture. J. Natl. Cancer Inst. 63: 29–41, 1979.

    PubMed  CAS  Google Scholar 

  71. Gaffney, E.V. and Pigot, D. Effect of serum on cells cultured from human mammary tumors.In Vitro14: 451–457, 1978.

    Article  PubMed  CAS  Google Scholar 

  72. Hallowes, R.C., Millis, R., Pigott, D., Shearer, M., Stoker, M.G.P. and Taylor-Papadimitriou, J. Results on a pilot study of cultures of human lacteal secretions and benign and malignant breast tumors. Clinical Oncology 3: 81–90, 1977.

    PubMed  CAS  Google Scholar 

  73. Dendy, P.P. and Hill, B.T. Human tumour drug sensitivity testingin vitrotechniques and clinical applications. New York: Academic Press, 1983.

    Google Scholar 

  74. White, M.T., Hu, A.S.L., Hamamoto, S.T. and Nandi, S.In vitroanalysis of proliferating epithelial cell populations from the mouse mammary gland: fibroblast-free growth and serial passage.In Vitro14: 271–281, 1978.

    Article  PubMed  CAS  Google Scholar 

  75. Yang, J., Richards, J., Guzman, R., Imagawa, W. and Nandi, S. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. U.S.A. 77: 2088–2092, 1980.

    Article  PubMed  CAS  Google Scholar 

  76. Gill, D.M. Mechanism of action of cholera toxin. Adv. Cyclic Nucl. Res. 8: 85–118, 1977.

    CAS  Google Scholar 

  77. Yang, N.S., Kube, D., Park, C. and Furmanski, P. Growth of human mammary epithelial cells on collagen gel surfaces. Cancer Res. 41: 4093–4100, 1981.

    PubMed  CAS  Google Scholar 

  78. Salomon, D., Liotta, L. and Kidwell, W. Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc. Natl. Acad. Sci. U.S.A. 78: 382–386, 1981.

    Article  PubMed  CAS  Google Scholar 

  79. Biran, S., Horowitz, A.T., Fuks, Z. and Vlodavsky, I. High-density lipoprotein and extracellular matrix promotes growth and plating efficiency of normal human mammary epithelial cells in serum-free medium. Int. J. Cancer 31: 557–566, 1983.

    Article  PubMed  CAS  Google Scholar 

  80. Wicha, M.S., Lowrie, G., Kohn, E., Bagavandoss, P. and Mann, T. Extracellular matrix promotes mammary epithelial growth and differentiationin vitro. Proc. Natl. Acad. Sci. U.S.A. 79: 3213–3217, 1982.

    Article  PubMed  CAS  Google Scholar 

  81. Richards, J., Pasco, D., Yang, J., Guzman, R. and Nandi, S. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Exp. Cell Res. 146: 1–14, 1983.

    Article  PubMed  CAS  Google Scholar 

  82. Lee, E.Y.-H., Parry, G. and Bissell, M.J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98: 146–155, 1984.

    Article  PubMed  CAS  Google Scholar 

  83. Carrington, C.A., Hosick, H.L., Forsyth, I.A. and Dils, R.R. Novel multi-alveolar epithelial structures from rabbit mammary gland that synthesize milk specific fatty acids in response to prolactin.In Vitro17: 363–368, 1981.

    Article  PubMed  CAS  Google Scholar 

  84. Teyssot, B., Servely, J.-L., Delouis, C. and Houdebine, L.-M. Control of casein gene expression in isolated cultured rabbit epithelial mammary cells. Mol. and Cell Endo. 23: 33–48, 1981.

    Article  CAS  Google Scholar 

  85. Suard, Y.M.L., Haeuptle, M.-T., Farinon, E. and Kraehenbuhl, J.-P. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96: 1435–1442, 1983.

    Article  PubMed  CAS  Google Scholar 

  86. Bisbee, C.A., Machen, T.E. and Bern, H.A. Mouse mammary epithelial cells on floating collagen gels: transepithelial ion transport and effects of prolactin. Proc. Natl. Acad. Sci. U.S.A. 76: 536–540, 1979.

    Article  PubMed  CAS  Google Scholar 

  87. Wilde, C.J., Hasan, R. and Mayer, R.J. Comparison of collagen gels and mammary extracellular matrix as substrata for study of terminal differentiation in rabbit mammary epithelial cells. Exp. Cell Res. 15: 519–532, 1984.

    Article  Google Scholar 

  88. Emerman, J.T., Enami, J., Pitelka, D.R., and Nandi, S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. U.S.A. 74: 4466–4470, 1977.

    Article  PubMed  CAS  Google Scholar 

  89. Foster, C.S., Smith, C.A., Dinsdale, E.A., Monaghan, P. and Neville, A.M. Human mammary gland morphogenesisin vitro: the growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev. Biol. 96: 197–216, 1983.

    Article  PubMed  CAS  Google Scholar 

  90. Taylor-Papadimitriou, J.T., Bartek, J., Durban, E., Burchell, J., Hallowes, R.C., Lane, E.B. andMillis, R. Monoclonal antibodies in the study of cell lineage, differentiation and malignancy in the human breast.In: Ceriani, R.L. (ed.), Monoclonal antibodies and breast cancer, pp. 60–78. Boston: Martinus Nijhoff Publishing, 1985.

    Google Scholar 

  91. Yang, J. and Nandi, S. Growth of cultured cells using collagen as substrate. Int. Rev. Cytology 81: 249–286, 1983.

    Article  CAS  Google Scholar 

  92. Pasco, D., Quan, A., Smith, S. and Nandi, S. Effects of hormones and EGF on proliferation of rat mammary epithelium enriched for alveoli. Exp. Cell Res. 141: 313–324, 1982.

    Article  PubMed  CAS  Google Scholar 

  93. Yang, J., Larson, L., Flynn, D., Elias, J. and Nandi, S. Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix. Cell Biology International Reports 6: 969–975, 1982.

    Article  PubMed  CAS  Google Scholar 

  94. Guzman, R.C., Osborne, R.C., Bartley, J.C., Imagawa, W., Asch, B.B., and Nandi, S.In vitrotransformation of mouse mammary epithelial cells grown serum-free inside collagen gels. Cancer Res. 47: 275–288, 1987.

    PubMed  CAS  Google Scholar 

  95. Imagawa, W., Tomooka, Y., Hamamoto, S. and Nandi, S. Stimulation of mammary epithelial cell growthin vitro: interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116: 1514–1524, 1985.

    Article  PubMed  CAS  Google Scholar 

  96. Imagawa, W., Tomooka, Y. and Nandi, S. Serum-free growth of normal and tumor mouse epithelial cells in primary culture. Proc. Natl. Acad. Sci. U.S.A. 79: 4074–4077, 1982.

    Article  PubMed  CAS  Google Scholar 

  97. Tomooka, Y., Imagawa, W., Nandi, S. and Bern, H.A. Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture. J. Cell Physiol. 117: 290–296, 1983.

    Article  PubMed  CAS  Google Scholar 

  98. Guzman, R.C., Osborn, R.C., Richards, J.E. and Nandi, S. Effects of phorbol esters on normal and tumorous mouse mammary epithelial cells embedded in collagen gels. J. Natl. Cancer Inst. 71: 69–73, 1983.

    PubMed  CAS  Google Scholar 

  99. McGrath, M., Palmer, S. and Nandi, S. Differential response of normal rat mammary epithelial cells to mammogenic hormones and EGF. J. Cell Physiol. 125: 182–191, 1985.

    Article  PubMed  CAS  Google Scholar 

  100. Richards, J., Hamamoto, S., Smith, S., Pasco, D., Guzman, R. and Nandi, S. Response of end bud cells from immature rat mammary gland to hormones when cultured in collagen gel. Exp. Cell Res. 147: 95–109, 1983.

    Article  PubMed  CAS  Google Scholar 

  101. Flynn, D., Yang, J. and Nandi, S. Growth and differentiation of primary cultures of mouse mammary epithelium embedded in collagen gel. Differentiation 22: 191–194, 1982.

    Article  PubMed  CAS  Google Scholar 

  102. Tonelli, Q.J., Soroff, S. Expression of a phenotype of normal differentiation in cultured mammary glands is promoted by epidermal growth factor and blocked by cyclic adenine nucleotide and prostaglandins. Differentiation 20: 253–259, 1981.

    Article  PubMed  CAS  Google Scholar 

  103. Salmon, S.E. and Trent, J.M. (eds). Human tumor cloning. New York: Grune and Stratton, 1984.

    Google Scholar 

  104. Osborne, C.K., Von Hoff, D.D. and Mullins, K. Endocrine therapy testing of human breast cancers in the soft agar clonogenic assay. Breast Cancer Res. Treat. 6: 229–235, 1985.

    Article  PubMed  CAS  Google Scholar 

  105. Arafah, B., Griffin, P., Gordon, N. and Pearson, O. Growth enhance ment of N-nitrosomethylurea-induced rat mammary tumor cells in soft agar by estrogen or prolactin. Cancer Res. 44: 5605–5608, 1984.

    PubMed  CAS  Google Scholar 

  106. Manni, A. and Wright, C. Polyamines as mediators of estrogen action on the growth of experimental breast cancer in rats. J. Natl. Cancer Inst. 73: 511–514, 1984.

    PubMed  CAS  Google Scholar 

  107. Zwiebel, J., Davis, M., Salomon, D. and Kidwell, W. Anchorage-independent growth-conferring factor production by rat mammary tumor cells. Cancer Res. 42: 5117–5125, 1982.

    PubMed  CAS  Google Scholar 

  108. Pitelka, D.R. Evaluation of morphological markers of mammary epithelial cells.In: McGrath, C.M., Brennan, M.S. and Rich, M.R. (eds.). Cell Biology of breast cancer, pp. 3–35. New York, Academic Press, 1980.

    Google Scholar 

  109. Kleinman, H.K., Klebe, R.J. and Martin, G.R. Role collagenous matricies in the adhesion and growth of cells. J. Cell Biol. 88: 473–485, 1981.

    Article  PubMed  CAS  Google Scholar 

  110. David, G. and Bernfield, M. Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells. J. Cell Biol. 91: 281–286, 1981.

    Article  PubMed  CAS  Google Scholar 

  111. Parry, G., Lee, E.Y.-H., Farsen, D., Koval, M. and Bissell, M.J. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp. Cell Res. 156: 487–499, 1985.

    Article  PubMed  CAS  Google Scholar 

  112. Emerman, J.T., Burwen, S.J. and Pitelka, D.R. Substrata properties influencing ultrastruetural differentiation of mammary epithelial cells in culture. Tissue and Cell 11: 109–119, 1979.

    Article  PubMed  CAS  Google Scholar 

  113. Yang, J., Elias, J.J., Petrakis, N.L., Wellings, S.R. and Nandi, S. Effects of hormones and growth factors on human mammary epithelial cells in collagen gel culture. Cancer Res. 41: 1021–1027, 1981.

    PubMed  CAS  Google Scholar 

  114. Daniel, C.W., Berger, J.J., Strickland, P. and Garcia, R. Similar growth pattern of mouse mammary epithelium cultivated in collagen matrixin vivoandin vitro. Dev. Biol. 104: 57–64, 1984.

    Article  PubMed  CAS  Google Scholar 

  115. Iyer, A.P. and Banerjee, M.R. Sequential expression of preneoplastic and neoplastic mouse mammary epithelial cells transformed in organ culture. J. Natl. Cancer Inst. 66: 893–905, 1981.

    PubMed  CAS  Google Scholar 

  116. Schaefer, F.V., Tonelli, Q.J., Dickens, M.S., Custer, R.P. and Sorof, S. Non-oncogenic hormone independent alveoli produced by carcinogens in cultured mouse mammary glands. Cancer Res. 43: 3310–3315, 1983.

    PubMed  CAS  Google Scholar 

  117. Dao, T.L. and Sinha, D. Mammary adenocarcinoma induced in organ culture by 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 49: 591–593, 1972.

    PubMed  CAS  Google Scholar 

  118. Russo, J., Tay, L.K. and Russo, I.H. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res. Treat. 2: 5–73, 1982.

    Article  PubMed  CAS  Google Scholar 

  119. Greiner, J.W., DiPaolo, J.A. and Evans, C.H. Carcinogen-induced phenotypic alterations in mammary epithelial cells accompanying the development of neoplastic transformation. Cancer Res. 43: 273–278, 1983.

    PubMed  CAS  Google Scholar 

  120. Chang, S.E., Keen, J., Lane, E.B. and Taylor-Papadimitriou, J. Establishment and characterization of SV40-transformed human breast epithelial cell lines. Cancer Res. 42: 2040–2053, 1982.

    PubMed  CAS  Google Scholar 

  121. Stampfer, M.R. and Bartley, J.C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo(a)pyrene. Proc. Natl. Acad. Sci. U.S.A. 82: 2394–2398, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Levay-Young, B.K., Imagawa, W., Yang, J., Richards, J.E., Guzman, R.C., Nandi, S. (1987). Primary Culture Systems for Mammary Biology Studies. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics