Advertisement

Endothelial Injury and Atherosclerosis

  • Russell Ross

Abstract

In 1973, we proposed a hypothesis of atherogenesis35 that provided a basis for the design of in vivo and in vitro experiments to determine how the advanced proliferative smooth muscle lesions of atherosclerosis form. Three fundamental biologic phenomena comprise the advanced lesions of atherosclerosis and lead to the development of occlusive lesions. Understanding why and how each of these phenomena occurs is fundamental to the development of this hypothesis. These phenomena are: (1) the accumulation of large numbers of intimal cells, principally proliferated smooth muscle together with numerous macrophages derived from blood monocytes; (2) formation by the proliferated smooth muscle cells of connective tissue matrix macromolecules including collagen, elastic fibers, and proteoglycans; and (3) accumulation of lipid both within the accumulated smooth muscle cells and macrophages, and within the components of the extracellular matrix. Any hypothesis of atherogenesis must take into account these phenomena, and should afford the opportunity to devise experiments to test the various components of the hypothesis

Keywords

Smooth Muscle Cell Endothelial Injury Fatty Streak Advanced Lesion Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assoian, R. K., and Sporn, M. B., 1986, Type p transforming growth factor in human platelets: Release during platelet degranulation and action on vascular smooth muscle cells, J. Cell. Biol. 102:1217–1223.PubMedCrossRefGoogle Scholar
  2. 2.
    la. Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Ross, R., and Sporn, M. D., 1987, Expression and secretion of type (3 transforming growth factor by activated human macrophages, Proc. Nat. Acad. Sci. USA 84:6020-6024.Google Scholar
  3. 3.
    Baird, A., Morm£de, P., and Bohlen, P., 1985,Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  4. 4.
    Barrett, T. B., Gajdusek, C. M., Schwartz, S. M., McDougall, J. K., and Benditt, E. P., 1984, Expression of the sis gene by endothelial cells in culture and in vivo, Proc. Natl. Acad. Sci. USA 81:6772-6774.Google Scholar
  5. 4.
    Baumgartner, H. R., and Studer, A., 1966, Folgen des gefasskatheterismus am normo-und hypercholesterinaemischen kaninchen, Pathol. Microbiol. 29:393–405.Google Scholar
  6. 6.
    Bevilacqua, M. P., Pober, J. S., Cotran, R. S., and Gimbrone, M. A., Jr., 1985, Interleukin 1 (IL-1) acts upon vascular endothelium to stimulate procoagulant activity and leukocyte adhesion, J. Cell. Biochem. Suppl. 9A:148 (abstract).Google Scholar
  7. 7.
    Bitteman, P. B., Rennard, S. I., Hunninghake, G. W., and Crystal, R. G., 1982, Human alveolar macrophage growth factor for fibroblasts: Regulation and partial characterization, J. Clin. Invest. 70:806–822.CrossRefGoogle Scholar
  8. 8.
    Cathcart, M. K., Morel, D. W., and Chisolm, G. M., III, 1985, Monocytes and neutrophils oxidize low-density lipoprotein making it cytotoxic, J. Leukocyte Biol. 38:341–350.PubMedGoogle Scholar
  9. 9.
    Chobanian, A. V., Brecher, P. I., and Haudenshild, C. C., 1986, Effects of hypertension and of antihypertension therapy on atherosclerosis: State of the Art Lecture, in: Inter-American Society Proceedings, Suppl. I 8:15–21.Google Scholar
  10. 10.
    DiCorleto, P. E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a plateletderived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80:1919-1923.Google Scholar
  11. 11.
    DiCorleto, P. E., and de la Motte, C. A., 1985, Characterization of the adhesion of the human monocytic cell line U-937 to cultured endothelial cells, J. Clin. Invest. 75:1153–1161.PubMedCrossRefGoogle Scholar
  12. 12.
    Dinarello, C. A., 1984, Interleukin-1, Rev. Infect. Dis. 6:51–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Faggiotto, A., and Ross, R., 1984, Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque, Arteriosclerosis 4:341–356.PubMedCrossRefGoogle Scholar
  14. 14.
    Faggiotto, A., Ross, R., and Harlan, L., 1984, Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation, Arteriosclerosis 4:323–340.PubMedCrossRefGoogle Scholar
  15. 15.
    Gajdusek, C., DiCorleto, P., Ross, R., and Schwartz, S. M., 1980, An endothelial cell-derived growth factor, Cell. Biol. 85:467–472.CrossRefGoogle Scholar
  16. 16.
    Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. I. Transition of blood borne monocytes into foam cells in fatty lesions, Am. J. Pathol. 103:181–190.PubMedGoogle Scholar
  17. 17.
    Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions, Am. J. Pathol. 103:191–200.PubMedGoogle Scholar
  18. 18.
    Glenn, K. C., and Ross, R., 1981, Humn monocyte-derived growth factor(s) for mesenchymal cells: Activation of secretion by endotoxin and concanavalin A, Cell 25:603–615.PubMedCrossRefGoogle Scholar
  19. 19.
    Harker, L. A., Ross, R., Slichter, S. J., and Scott, C. R., 1976, Homocystine-induced atherosclerosis: The role of endothelial cell injury and platelet response in its genesis,J. Clin. Invest. 58:731–741.PubMedCrossRefGoogle Scholar
  20. 20.
    Heldin, C.-H., and Westermark, B., 1984, Growth factors: mechanism of action and relation to oncogenes, Cell 37:9–20.PubMedCrossRefGoogle Scholar
  21. 20.
    Jerome, W. G., and Lewis, J. C., 1984, Early atherogenesis in White Carneau pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation, Am. J. Pathol. 116:56–68PubMedGoogle Scholar
  22. 22.
    Joris, J., Zand, T., Nunnary, J. L., Krolikowski, F. J., and Majno, G., 1983, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats, Am. J. Pathol. 113:341–358.PubMedGoogle Scholar
  23. 23.
    Kohler, N., and Lipton, A., 1974, Platelete as a source of fibroblast growth-promoting activity, Exp. Cell Res. 87:297–301.PubMedCrossRefGoogle Scholar
  24. 24.
    Leibovich, S. J., and Ross, R., 1976, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84:501–513.PubMedGoogle Scholar
  25. 25.
    Lewis, J. C., Taylor, R. G., Jones, N. D., St. Clair, R. W., and Cornhill, J. R., 1982, Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge, Lab. Invest. 46:123–138.PubMedGoogle Scholar
  26. 26.
    Madtes, D. K., Raines, E. W., Sakariassen, K. S., Assoian, R. K., Sporn, M. B., Bell, G. I., and Ross, R. 1988, Induction of transforming growth factor alpha in activated human alveolar macrophages, Cell (in press).Google Scholar
  27. 27.
    Martin, B. M., Gimbrone, M. A., Unanue, E. R., and Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor, J. Immunol. 126:1510–1515.PubMedGoogle Scholar
  28. 28.
    Martinet, Y., Bitterman, P. B., Mornex, J.-F., Grotendorst, G. R., Martin, G. R., and Crystal, R. G., 1986,Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity, Nature 319:158–160.PubMedCrossRefGoogle Scholar
  29. 29.
    Mazzone, T., Jensen, M., and Chait, A., 1983, Human arterial wall cells secrete factors that are chemotactic for monocytes, Proc. Natl. Acad. Sci. USA 80:5094-5097.Google Scholar
  30. 30.
    Nathan, C. F., Murray, H. W., and Cohn, Z. A., 1980, Current concepts: The macrophage as an effector cell, N. Engl. J. Med. 303:622–626.PubMedCrossRefGoogle Scholar
  31. 31.
    Nilsson, J., Sjolund, M., Palmberg, L., Thyberg, J., and Heldin, C.-H., 1985, Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 82:4418-4422.Google Scholar
  32. 32.
    Oka, Y., and Orth, D. N., 1983, Human plasma epidermal growth factor/p-urogastrone is associated with blood platelets, J. Clin. Invest. 72:249–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Report of the Working Group on Arteriosclerosis of the National Heart, Lung, and Blood Institute, 1981, Volume 2, Government Printing Office, Washington, D.C. [DHEW Publ. No. (NIH) 82-2035].Google Scholar
  34. 34.
    Rosenfeld, M. E., Faggiotto, A., and Ross, R., 1985, The role of the mononuclear phagocyte in primate and rabbit models of atherosclerosis, in: Proceedings of the Fourth Leiden Conference on Mononuclear Phagocytes, Nijhoff, The Hague, pp 795–802.Google Scholar
  35. 35.
    Ross, R., 1981, Atherosclerosis—A problem of the biology of arterial wall cells and their interaction with blood components, Arteriosclerosis 1:293–311.PubMedCrossRefGoogle Scholar
  36. 36.
    Ross, R., 1986, The pathogenesis of atherosclerosis—An update, N. Engl. J. Med. 314:488–500.PubMedCrossRefGoogle Scholar
  37. 37.
    Ross, R., and Glomset, J. A., 1973, Atherosclerosis and the smooth muscle cell, Science 180:1332–1339.PubMedCrossRefGoogle Scholar
  38. 38.
    Ross, R., and Glomset, J. A., 1976, The pathogenesis of atherosclerosis, N. Engl. J. Med. 295:369–377, 420-425.PubMedCrossRefGoogle Scholar
  39. 39.
    Ross, R., Glomset, J., Kariya, B., and Harker, L., 1974, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71:1207-1210.Google Scholar
  40. 40.
    Ross, R., and Harker, L., 1976, Hyperlipidemia and atherosclerosis, Science 193:1094–1100.PubMedCrossRefGoogle Scholar
  41. 41.
    Ross, R., Raines, E. W., and Bowen-Pope, D. F., 1986, The biology of platelet-derived growth factor, Cell 46:155–169.PubMedCrossRefGoogle Scholar
  42. 42.
    Ross, R., Wight, T. N., Strandness, E., and Theile, B., 1984, Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery, Am. J. Pathol. 114:79–93.PubMedGoogle Scholar
  43. 43.
    Seifert, R. A., Schwartz, S. M., and Bowen-Pope, D. F., 1984, Developmentally regulated production of platelet-derived growth factor-like molecules, Nature 311:669–671.PubMedCrossRefGoogle Scholar
  44. 44.
    Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF, Cell 43:277–286.PubMedCrossRefGoogle Scholar
  45. 45.
    Stemerman, M. B., and Ross, R., 1972, Experimental atherosclerosis. I. Fibrous plaque formation in primates, an electron microscope study, J. Exp. Med. 136:769–789.PubMedCrossRefGoogle Scholar
  46. 46.
    Stiles, C. D., 1983, The molecular biology of platelet-derived growth factor, Cell 33:653–655.PubMedCrossRefGoogle Scholar
  47. 45.
    Walker, L. N., Bowen-Pope, D. F., Ross, R., and Reidy, M. A., 1986, Production of PDGF-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury, Proc. Natl. Acad. Sci. USA 83:7311-7315.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Russell Ross
    • 1
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA

Personalised recommendations