The Acetylcholine Receptor and its Membrane Environment

  • F. J. Barrantes
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

The nicotinic acetylcholine receptor (AChR) is by far the best characterized neurotransmitter receptor protein. Various disciplines have contributed to our current understanding of this macromolecule: Early biochemical studies were catalyzed by the availability of tissue sources rich in AChR and appropriate ligands like the α-toxins; more recently the application of immunochemistry, cDNA recombinant techniques, rapid kinetic methods and patch-clamp electrophysiological techniques have produced spectacular advances in the field. The AChR is a glycophosphoprotein of about a quarter of a million molecular weight composed of two quasi-identical subunits (α) and three additional chains γ, δ) in a mole ratio of 2:1:1:1 (Reynolds and Karlin, 1978; Raftery et at, 1980; Lindstrøm et al, 1982). Apparent molecular weights determined by SDS gel electrophoresis are 39,000,48,000,58,000, and 64,000, respectively, whereas the exact molecular weights predicted from the nucleotide sequences of the cDNAs coding for each subunit are 50,166 (α), 53,681 (β), 56,279(γ), and 57,565 (δ) (Numa et al, 1983). The α subunits carry the recognition site for agonist and competitive antagonists. All subunits are glyco-polypeptides and traverse the membrane at least once.

Keywords

Hexane Hydrocarbon Immobilization Serine Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. J., Tzartos, S. J., Gullick, W., Lindstrøm, J., and Biobel, G., 1983, J. NeuroscL 3:1773–1784.Google Scholar
  2. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., and Webb, W. W., 1976, Biophys. J 16:1055–1069.PubMedCrossRefGoogle Scholar
  3. Ballivet, M., Patrick, J., Lee, J., and Heinemann, S., 1982, Proc. Natl Acad. Sci USA 79:4466–4470.PubMedCrossRefGoogle Scholar
  4. Barrantes, F. J., 1979, Ann. Rev. Biophys. Bioeng. 8:287–321.CrossRefGoogle Scholar
  5. Barrantes, F. J., 1982a, in: Neuroreceptors (F. Hucha, ed.), pp. 315–328, W. de Gruyter, Berlin.Google Scholar
  6. Barrantes, F. J., 1982b, J. Cell Biol. 92:60–68.PubMedCrossRefGoogle Scholar
  7. Barrantes, F. J., 1983, Int. Rev. Neurobiol 24:259–341.PubMedCrossRefGoogle Scholar
  8. Barrantes, F. J., 1986, in: Ionic Channels in Cells and Model Systems (R. Latorre, ed.), Plenum Press, New York.Google Scholar
  9. Barrantes, F. J., Neugebauer, D.-Ch., and Zingsheim, H.P., 1980, FEBS Lett. 112:3–78.Google Scholar
  10. Bartholdi, M., Barrantes, F. J., and Jovin, T. M., 1981., Eur. J. Biochem. 120:389–397.PubMedCrossRefGoogle Scholar
  11. Bell, R. M., and Coleman, R. A., 1980, Ann. Rev. Biochem. 43:243–277.Google Scholar
  12. Bienvenue, A., Rousselet, A., Kato, G., and Devaux, P. F., 1977, Biochemistry 16:841–848.PubMedCrossRefGoogle Scholar
  13. Bleasdale, J. E., Hawthorne, J. N., Widlund, L., and Heilbronn, E., 1976, Biochem. J. 158:557–565.PubMedGoogle Scholar
  14. Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A. 1981, Proc. Natl. Acad. Set USA 78:3586–3590.CrossRefGoogle Scholar
  15. Bon, F., Lebrun, E., Gomel, J., van Rapenbusch, R., Cartaud, J., Popot, J.-L.. and Changeux, J.-P., 1984, J. Mol. Biol. 176:205–237.PubMedCrossRefGoogle Scholar
  16. Breckenridge, W. C., and Vincendon, G., 1971, C R. Acad. Sci Paris 273B:1337–1339.Google Scholar
  17. Brisson, A., 1980, These Doctorat d’Etat, Grenoble, France.Google Scholar
  18. Brisson, A., and Unwin, P. N. T., 1985, Nature 315:474–477.PubMedCrossRefGoogle Scholar
  19. Brophy, P. J., Horváth, L. L, and Marsh, D., 1984, Biochemistry 23:860–865.PubMedCrossRefGoogle Scholar
  20. Brotherus, J. R., Griffith, O. H., Brotherus, M. O ., Jost, P. C., Silvius, J. R., and Hoking, L. E., 1981, Biochemistry 20:5261–5267.PubMedCrossRefGoogle Scholar
  21. Cartaud, J., Sobel, A., Rousselet, A., Devaux, P. F., and Changeux, P. F., 1981, J. Celt Biol 90:418–426.CrossRefGoogle Scholar
  22. Changeux, J.-P., Bon, F., Cartaud, J., Devillers-Thiery, A. J., Heidmann, T., Holton, B., Ngheim, H.-O., Popot, J.-L., van Rapenbusch, R., and Tzartos, S., 1983, Cold Spring Harbor Symp. Quant. Biol 68:35–52.Google Scholar
  23. Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Proc. Natl Acad. Sci. USA 80:1111–1115.Google Scholar
  24. Conti-Tronconi, B. M., Hunkapiller, M. W., and Raftery, M. A., 1984, Proc. Natl Acad. Sci USA 81:2631–2634.PubMedCrossRefGoogle Scholar
  25. Conti-Tronconi, B. M., and Raftery, M. A., 1982, Ann. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  26. Criado, M., Eibl, H., and Barrantes, F. J., 1982a, Biochemistry 21:3622–3629.PubMedCrossRefGoogle Scholar
  27. Criado, M., Eibl, H., and Barrantes, F. J., 1984, J. Biol Chem. 259:9188–9198.PubMedGoogle Scholar
  28. Criado, M., Hochswender, S., Sarin, V., Fox, J. L., and Lindstr0m, J., 1985, Proc. Natl Acad. Sci. USA 82:2004–2008.Google Scholar
  29. Criado, M., Vaz, W. L. C., Barrantes, F. J., and Jovin, T. M., 1982b, Biochemistry 21:5750–5755.PubMedCrossRefGoogle Scholar
  30. Dalziel, A. W., Rollins, E. S., and McNamee, M. G., 1980, FEBS Lett 122:193–196.PubMedCrossRefGoogle Scholar
  31. De Kruijff, B., and Demel, R. A., 1974, Biochim. Biophys. Acta 339:57–70.PubMedCrossRefGoogle Scholar
  32. Devillers-Thiery, A., Giraudat, J., Bentavoulet, M., and Changeux, J-P., 1983, Proc. Natl Acad. Sci USA 80:2067–2071PubMedCrossRefGoogle Scholar
  33. Doster, W., Hess, B., Watters, D., and Maelicke, A., 1980, FEBS Lett. 113:312–314.PubMedCrossRefGoogle Scholar
  34. Ellens, J. F., Blazing, M. A., and McNamee, M. G., 1983, Biochemistry 22:5523–5535.CrossRefGoogle Scholar
  35. Fairclough, R. H., Finér-Moore, J., Love, R. A., Kristofíerson, D., Desmeules, P. J., and Stroud, R. M., 1983, Cold Spring Harbor Symp. Quant. Biol. 68:9–20.Google Scholar
  36. Finer-Moore, J., and Stroud, R. M., 1984, Proc. Natl Acad. Sci. USA 81:155–159.PubMedCrossRefGoogle Scholar
  37. Froehner, S. C., 1981, Biochemistry 20:4905–4915.PubMedCrossRefGoogle Scholar
  38. Giraudat, J., Montecucco, C., Bisson, R., and Changeux, J.-P., 1985, Bíochemistry 24:3121 -3127.PubMedCrossRefGoogle Scholar
  39. González-Ros, J. M., Llanillo, M., Paraschos, A., and Martinez-Carrion, M., 1982, Biochemistry 21:3467–3474.PubMedCrossRefGoogle Scholar
  40. Guy, H. R., 1981, Cell Molec. Neurobiol 1:231–258.PubMedCrossRefGoogle Scholar
  41. Guy, H. R., 1983, Biophys. J. 45:249–261.CrossRefGoogle Scholar
  42. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Pflüggers Arch. ges. Physiol. 391:85–100.CrossRefGoogle Scholar
  43. Hamilton, S. L., Pratt, D. R., and Eaton, D. C., 1985, Biochemistry 24:2210–2219.PubMedCrossRefGoogle Scholar
  44. Heuser, J. E., and Salpeter, S. R., 1979, I Cell Biol 82:150–173.CrossRefGoogle Scholar
  45. Holtzman, E, Wise, D., Wall, J., and Karlin, A., 1982, Proa Natl. Acad Set USA 79:310–314.CrossRefGoogle Scholar
  46. Hopp, T. P., and Woods, K. R., 1981, Proc. Natl Acad. Sci. USA 78:3824–3828.PubMedCrossRefGoogle Scholar
  47. Juillerat, M., Barkas, T., and Tzartos, S., 1984, FEBS Lett 168:143–148.PubMedCrossRefGoogle Scholar
  48. Kao, P. N., Dwork, A. J., Kaldany, R.-R. J., Silver, M. L., Wideman, J., Stein, S., and Karlin, A., 1984, J. Biol. Chem. 259:11662–11665.PubMedGoogle Scholar
  49. Karlin, A., Holtzman, E., Yodh, N., Lobel, P., Wall, J., and Halnfield, J., 1983, J. Biol. Chem. 258:6678–6681.Google Scholar
  50. Kilian, P. L., Dunlap, C. R., Mueller, P., Schell, M. A., Huganir, R. L., and Racker, E., 1980, Biochem. Biophys. Res. Commun. 93:409–414.PubMedCrossRefGoogle Scholar
  51. Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Biophys. J. 37:371–383.PubMedCrossRefGoogle Scholar
  52. Klymkowsky, M. W., and Stroud, R. M., 1979, J. Mol Biol 128:319–334.PubMedCrossRefGoogle Scholar
  53. Knowles, P. F., Watts, A., and Marsh, D., 1979, Biochemistry 18:4490–4487.CrossRefGoogle Scholar
  54. Kosower, E. M., 1983, FEBS Lett. 155:245–247.PubMedCrossRefGoogle Scholar
  55. Kosower, E. M., 1984, FEBS Lett. 172:1–5.PubMedCrossRefGoogle Scholar
  56. Kostic, D., Rakic, L., and Vranesevic, A., 1972, Evol. Biokhim. Fisiol 8:494–498.Google Scholar
  57. Kubo, T., Nods, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Mivara, T., and Numa, S,, 1985, Eur. J. Biochem. 149:5–13.PubMedCrossRefGoogle Scholar
  58. Kyte, J., and Doolittle, R. F., 1982, J. Mol Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  59. Lantz, G., Burgun, C., Cremel, G., Hubert, P., Darcy, F., and Waksman, A. 1985, Neurochem. Int. 7:331–339.PubMedCrossRefGoogle Scholar
  60. LaRochelle, W. J., Wray, B. E., Sealock, R., and Froehner, S. €., 1985, J. Cell Biol 100:684–691.PubMedCrossRefGoogle Scholar
  61. Latorre, R., Alvarez, O., Cecchi, X., and Vergara, C., 1985, Ann. Rev. Biophys. Chem. 14:79–111.CrossRefGoogle Scholar
  62. Lennon, V. A., McCormick, D. J., Lambert, E. H., Griesmann, G. E., and Atassi, M. Z., 1985, Proc. Natl. Acad. Sci. USA 82:8805–8809.PubMedCrossRefGoogle Scholar
  63. Letters, R. 1964, Biochem. J. 93:313–316.PubMedGoogle Scholar
  64. Lindstrøm, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Nature 311:573–575.PubMedCrossRefGoogle Scholar
  65. Lindstrøm, J., Tzartos, S., and Gullick, W., 1982, Ann. NY. Acad. Sci. 377:1–19.CrossRefGoogle Scholar
  66. Lindstrøm, J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montal, M., 1983, Cold Spring Harbor Symp. Quant. BioL 68:89–99.Google Scholar
  67. Lo, M. M. S., Barnard, E. A., and Dolly, J. O., 1982, Biochemistry 21:2210–2217.PubMedCrossRefGoogle Scholar
  68. Lo, M. M. S., Garland, P. B., Lamprecht, J., and Barnard, E. A., 1980, FEBS Lett. 111:407–412.PubMedCrossRefGoogle Scholar
  69. Lüdi, H., Oeticker, H., Brodbeck, U., Ott, P., Schwendimann, B., and Futpius, B. W., 1983, J. Membrane Biol. 74:75–84.CrossRefGoogle Scholar
  70. Lynch, D. V., and Thompson, G. A., Jr., 1984, Trends Biochem. Sci. 9:442–445.CrossRefGoogle Scholar
  71. Marsh, D., 1985, in: Progress in Protein-Lipid Interactions (A. Watts and J. J. H. H. M. De Pont, eds.), Vol. 4, pp. 143–172, Elsevier Science, Amsterdam.Google Scholar
  72. Marsh, D., and Barrantes, F. J., 1978, Proc. Natl. Acad. Sci USA 75:4329–4344.PubMedCrossRefGoogle Scholar
  73. Marshy D., and Watts, A., 1982, in: Lipid-Protein Interactions (P. C. Jost and O. H. Griffith, eds.), Vol. II, pp. 53–126, Wiley, New York.Google Scholar
  74. Marsh, D., Watts, A., and Barrantes, F. J., 1981, Biochim. Biophys. Acta 645:97–101PubMedCrossRefGoogle Scholar
  75. Marsh, D., Watts, A., Pates, R. D., Uhl, R., Knowles, P. F., and Esmann, M., 1982, Biophys. J. 37:265–274.Google Scholar
  76. McCormick, D. J., and Atassi, M. Z., 1984, Biochem. J. 224:995–1000.Google Scholar
  77. McNamee, M. G., Ellena, J. F., and Dalziei, A. W., 1982, Biopkys. J. 37:103–104.CrossRefGoogle Scholar
  78. Michaelson, D. M., and Raftery, M. A., 1974, Proa Nail Acad Set USA 71:4768–4772CrossRefGoogle Scholar
  79. Middlemas, D. S., and Raftery, M. A., 1983, Biochim. Biophys. Res. Commun. 115:1075–1082.CrossRefGoogle Scholar
  80. Mishina, M, Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y. Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Nature 318:364–368CrossRefGoogle Scholar
  81. Momoi, M. Y., and Lennon, V. A., 1986, J. Neurochem 46:76–81.PubMedCrossRefGoogle Scholar
  82. Nakajima, Y., and Bridgman, P. C., 1981, J. Cell Biol. 88:453–458.PubMedCrossRefGoogle Scholar
  83. Naner, E., and Sakmann, B., 1976, Nature 260:799–802CrossRefGoogle Scholar
  84. Nghiêm, H. O., Cartaud, J., Dubrenil, C., Kordeli, C., Buttln, G., and Changeux, J.-P., 1983, Proc. Natl Acad. Sci USA 80:6403–6407.PubMedCrossRefGoogle Scholar
  85. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S., 1983a, Nature 305:818–823.PubMedCrossRefGoogle Scholar
  86. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, MInayama, S., Miyata, T., and Numa, S., 1982, Nature 299:793–797.PubMedCrossRefGoogle Scholar
  87. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Nature 301:251–255.PubMedCrossRefGoogle Scholar
  88. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983c, Nature 302:528–532.PubMedCrossRefGoogle Scholar
  89. Numa, S., Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Kikyotani, S., 1983, Cold Spring Harbor Symp. Quant. Biol 48:57–69.PubMedGoogle Scholar
  90. Orci, L., Montesano, R., Meda, P., Malaisse-Lagae, F., Brown, D., Perrelet, A., and Vassalli, P., 1981, Proc. Natl Acad. Sci USA 78:293–297.PubMedCrossRefGoogle Scholar
  91. Poo, M., 1982, Nature 295:332–334.PubMedCrossRefGoogle Scholar
  92. Popot, J. L., Demel, R. A., Sobel, A., Van Deenen, L. L. M., and Changeux, J. P., 1978, Eur. J. Biochem. 85:27–42.PubMedCrossRefGoogle Scholar
  93. Popot, J. L., and Changeux, J.-P., 1984, Physiol Rev. 64:1162–1239.PubMedGoogle Scholar
  94. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Science 208:1454–1457.PubMedCrossRefGoogle Scholar
  95. Reynolds, J. A., and Karlin, A., 1978, Biochemistry 17:2035–2038PubMedCrossRefGoogle Scholar
  96. Rosenberg, P., 1973, J. Pharmaceut. Sci. 62:1552–1554.CrossRefGoogle Scholar
  97. Rotstein, N., Arias, H., Aveldaño, M. I., and Barrantes, F. J., 1987a, J. Neurochem. 49:1341–1347.PubMedCrossRefGoogle Scholar
  98. Rotstein, N., Arias, H., Barrantes, F. J., and Aveldaño, M. I., 1987b, J. Neurochem. 49:1333–1340.PubMedCrossRefGoogle Scholar
  99. Rousselet, A., Cartaud, J., and Devaux, P. F., 1981, Biochim. Biophys. Acta 648:169–185.PubMedCrossRefGoogle Scholar
  100. Rousselet, A., Devaux, P. F., and Wirtz, K. W., 1979, Biochem. Biophys. Res. Commun. 90:871–877.PubMedCrossRefGoogle Scholar
  101. Sapatini, D. D., Kreivich, G., Morimoto, T., and Adesnik, M.t 1982, J. Cell Biol 92:1–22.CrossRefGoogle Scholar
  102. Saffman, P. G., and Delbriick, M., 1975, Proc. Natl Acad. Sci USA 72:3111–3113.PubMedCrossRefGoogle Scholar
  103. Sakmand, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., and Numa, S., 1985, Nature 318:538–543.CrossRefGoogle Scholar
  104. Sator, U. S., González-Ros, J. M., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979, Biochemistry 18:1200–1206.PubMedCrossRefGoogle Scholar
  105. Schiebler, W., and Hucho, F., 1978, Eur. J. Biochem. 85:55–63.PubMedCrossRefGoogle Scholar
  106. Schindler, H., 1982, Neurosc. Res. Program Bull 20:295–301.Google Scholar
  107. Sealock, R., Wray, B. E., and Froehner, S. C., 1984, J. Cell Biol. 96:2239–2244.CrossRefGoogle Scholar
  108. Shibahara, S., Kubo, T., Perski, H. J., Takahashi, H., Noda, M., and Numa, S., 1985, Eur. J. Biochem. 146:15–22.PubMedCrossRefGoogle Scholar
  109. Silvius, J. R., McMillen, D. A., Saley, N. D., Jost, P. C., and Griffith, O. H., 1984, Biochemistry 23:538–547.PubMedCrossRefGoogle Scholar
  110. St. John, P. A., Froehner, S. C, Goodenough, D. A., and Cohen, J. B., 1982, J. Cell Biol. 92:333–342.PubMedCrossRefGoogle Scholar
  111. Strader, C. D., and Raftery, M. A., 1980, Proa Natl. Acad. ScL USA 77:5807–5811.CrossRefGoogle Scholar
  112. Sumikawa, K., Houghton, M., Smith, J. C., Bell, L., Richards, B. M., and Barnard, E. A., 1982, Nucleic Acids Res. 10:5809–5822.PubMedCrossRefGoogle Scholar
  113. Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Eur. J. Biochem. 143:109–115.PubMedCrossRefGoogle Scholar
  114. Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, T., Kuno, M., and Numa, S., 1985, Nature 315:761–764.PubMedCrossRefGoogle Scholar
  115. Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Eur. J. Biochem. 144:11–17.PubMedCrossRefGoogle Scholar
  116. Tank, D. W., Wu, E.-S., and Webb, W. W., 1982, J. Cell Biol. 92:207–212.PubMedCrossRefGoogle Scholar
  117. Tarrab-Hazdai, R., Bercovici, T., Goldfarb, V., and Gitler, C., 1980, J. Biol Chem. 255:1204–1209.Google Scholar
  118. Thomas, D. D., Bigelow, D. J., Squier, T. C., and Hidalgo, C., 1982, Biophys. J. 37:217–225.PubMedCrossRefGoogle Scholar
  119. Trams, E. G., and Brown, E. A. B., 1972, Jugoslav. Physiol Pharmacol Acta 8:97–105.Google Scholar
  120. Verstraete, M., and Vandenbroucke, J., 1956, Acta Med. Scand. 155:37–48.PubMedCrossRefGoogle Scholar
  121. Watts, A., Volotovski, I. D., and Marsh, D., 1979, Biochemistry 18:5006–5013.PubMedCrossRefGoogle Scholar
  122. White, M. M., Mixter Mayne, K., Lester, H., and Davidson, N, 1985, Proc. Natl Acad. Sci USA 82:4852–4856.PubMedCrossRefGoogle Scholar
  123. Wilson, P. T., Lentz, T. L., and Hawroth, E., 1985, Proc. Natl Acad. Sci. USA 82:8790–8794PubMedCrossRefGoogle Scholar
  124. Wise, D. S., Wall, J., and Karlin, A., 1981, J. Biol Chem. 256:12624–12627PubMedGoogle Scholar
  125. Young, E. F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z. W., and Stroud, R. M., 1985, Proc. Natl Acad. Sci. USA 82:626–630.PubMedCrossRefGoogle Scholar
  126. Zingsheim, H. P., Neugebauer, D.-Ch., Barrantes, F. J., and Frank, J., 1980, Proc. Natl Acad. Sci. USA 77:952–956.PubMedCrossRefGoogle Scholar
  127. Zingsheim, H. P., Neugebauer, D.-Ch., Frank, J., Hänicke, W., and Barrantes, F. J., 1982a, EMBOJ. 1:541–547.PubMedGoogle Scholar
  128. Zingsheim, H. P., Barrantes, F. J., Frank, J., Hänicke, W., and Neugebauer, D.-Ch., 1982b, Nature 299:81–84.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. J. Barrantes
    • 1
  1. 1.Instituto de Investigaciones Bioquímicas (INIBIBB)Universidad Nacional del SurBahía BlancaArgentina

Personalised recommendations