Advertisement

Cholinergic Drugs and Human Cognitive Performance

  • B. J. Sahakian

Abstract

Three major lines of investigation have given impetus to our understanding of the role of cholinergic transmission in human cognition: study of the effects of cholinomimetics and anticholinergic drugs on behavior of experimental animals, on cognitive function in normal human subjects, and in patients with dementia of the Alzheimer type, which is associated with degeneration of the cholinergic projection to hippocampus and neocortex. The literature in each of these areas will be reviewed selectively in an attempt to determine whether the reported varied effects of these agents on cognitive performance can be attributed to effects on a single or restricted number of behavioral processes, and to assess the clinical and applied value of this research.

Keywords

Dichotic Listening Cholinergic Drug Cholinergic Agent Mnemonic Process Stimulus Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R. C, and Shiffrin, R. M., 1968, Human memory: A proposed system and its control processes, in: The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 2 ( K. W. Spence and J. T. Spence, eds.), Academic Press, New York, pp. 189–195.Google Scholar
  2. Baddeley, A. D., 1984, The fractionation of human memory, Psychol. Med. 14: 259–264.PubMedCrossRefGoogle Scholar
  3. Bartus, R. T., Dean, R. L., III, and Beer, B., 1980, Memory deficits in aged cebus monkeys and facilitation with central cholinomimetics, Neurobiol. Aging 1: 145–152.CrossRefGoogle Scholar
  4. Bartus, R. T., Dean, R. L., III, Beer, B. and Lippa, A., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408–417.PubMedCrossRefGoogle Scholar
  5. Bartus, R. T., Flicker, C, and Dean, R. L., III, 1983, Logical principles for the development of animal models of age-related memory impairments, in: Assessments in Geriatric Psychopharmacology ( T. Crook, S. Ferris, and R. Bartus, eds.), Powley Assoc., Madison, CT, pp. 263–299.Google Scholar
  6. Bartus, R. T., Dean, R. L., III, and Beer, B., 1984, Cholinergic precursor therapy for geriatric cognition: its past, its present, and a question of its future, in: Nutrition in Gerontology ( J. M. Ordy, D. Harman, and R. Alfin-Slater, eds.), Raven Press, New York, pp. 191–225.Google Scholar
  7. Beach, G. O., Fitzgerald, R. P., Holmes, R. Phibbs, B., and Struckenhoff, H., 1964, Scopolamine poisoning, N. Engl. J. Med. 270: 1354–1355.PubMedCrossRefGoogle Scholar
  8. Beller, S. A., Overall, J. E., and Swann, A. C, 1985, Efficacy of oral physostigmine in primary degenerative dementia: A double-blind study of response to different dose level, Psychopharmacology 87: 147–151.PubMedCrossRefGoogle Scholar
  9. Bernstein, S., and Leff, R., 1967, Toxic psychosis from sleeping medicines containing scopolamine, N. Engl. J. Med. 277: 638–639.PubMedCrossRefGoogle Scholar
  10. Bignami, G., 1967, Anticholinergic agents as tools in the investigation of behavioral phenomena. Proc. 5th Congress, Collegium Internationale Neuropsychopharmacologicum, Washington, DC, Excerpta Med. Int. Congr. Ger. No. 129.Google Scholar
  11. Bowen, D. M., 1984, Cellular ageing: Selective vulnerability of cholinergic neurones in human brain, in: Monographs in Developmental Biology ( H. W. Sauer, ed.), S. Karger AG, Basel, pp. 42–59.Google Scholar
  12. Brown, K., and Warburton, D. M., 1971, Attenvation of stimulus sensitivity by scopolamine, Psychonomic Science 22: 297–298.Google Scholar
  13. Buschke, H., 1973, Selective reminding for analysis of memory and learning, J. Verbal Learning Verbal Behav. 12: 543–550.CrossRefGoogle Scholar
  14. Caine, E. D., Weingartner, H., Ludlow, C. L., Cudahy, E. A., and Wehry, S., 1981, Qualitative analysis of scopolamine-induced amnesia, Psychopharmacology 74: 74–80.PubMedCrossRefGoogle Scholar
  15. Callaway, E., Halliday, R., Naylor, H., and Schechter, G., 1985, Effects of oral scopolamine on human stimulus evaluation. Psychopharmacology 85: 133–138.PubMedCrossRefGoogle Scholar
  16. Carlton, P. L., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70: 19–39.PubMedCrossRefGoogle Scholar
  17. Castaneda, C, 1968, The Teachings of Don Juan, Simon amp; Schuster, New York.Google Scholar
  18. Christie, J. E., Shering, A., Ferguson, J., and Glen, A. I M., 1981, Physostigmine and arecoline: Effects of intravenous infusions in Alzheimer presenile dementia, Br. J. Psychiatry 138: 46–50.PubMedCrossRefGoogle Scholar
  19. Collerton, D., 1986, Cholinergic function and intellectual decline in Alzheimer’s disease, Neuroscience 19: 1–28.PubMedCrossRefGoogle Scholar
  20. Crow, T. J., Grove-White, I., and Ross, D. G., 1975, The specificity of the action of hyoscine on human learning, Br. J. Clin. Pharmacol. 2: 367–368 P.Google Scholar
  21. Davies, P., and Feisullin, S., 1981, Postmortem stability of α-bungarotoxin binding studies in mouse and human brain, Brain Res. 216: 449–454.PubMedCrossRefGoogle Scholar
  22. Davies, P., and Verth, A. H., 1978, Regional distribution of muscarinic acetylcholine receptors in normal and Alzheimer’s type dementia brains, Brain Res. 138: 385–392.CrossRefGoogle Scholar
  23. Davis, K. L., and Mohs, R. C, 1982, Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine, Am. J. Psychiatry 139: 1421–1424.PubMedGoogle Scholar
  24. Davis, K. L., Hollister, L. E., Overall, J., Johnson, A., and Train, K., 1976, Physostigmine: Effect on cognition and affect in normal subjects, Psychopharmacology 51: 23–27.PubMedCrossRefGoogle Scholar
  25. Davis, K. L., Mohs, R. C, Tinklenberg, J. R., Pfefferbaum, A., Hollister, L. E., and Kopell, B. S., 1978, Physostigmine: Improvement of long term memory processes in normal humans, Science 201: 272–274.PubMedCrossRefGoogle Scholar
  26. Davis, K. L., Mohs, R. C, and Tinklenberg, J. R., 1979, Enhancement of memory by physostigmine, N. Eng. J. Med. 301: 946.Google Scholar
  27. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.PubMedCrossRefGoogle Scholar
  28. Deutsch, J. A., 1983, The cholinergic synapse and the site of memory, in: The Physiological Basis of Memory, 2nd ed. ( J. A. Deutsch, ed.), Academic Press, New York, pp. 367–386.Google Scholar
  29. Dews, P. B., and Wenger, G. R., 1977, Rate-dependency of the behavioural effects of amphetamine, in: Advances in Behavioral Pharmacology, Vol. 1 ( T. Thompson and P. B. Dews, eds.), Academic Press, New York, pp. 167–227.Google Scholar
  30. Drachman, D. A., and Sahakian, B. J., 1979, Effects of cholinergic agents on human learning and memory, in: Nutrition and the Brain, Vol. 5 ( A. Barbeau, J. H. Growdon, and R. J. Wurtman, eds.), Raven Press, New York, pp. 351–366.Google Scholar
  31. Drachman, D. A., and Sahakian, B. J., 1980, Memory and cognitive function in the elderly, Arch. Neurol. 37: 674–675.PubMedGoogle Scholar
  32. Drachman, D. A., Noffsinger, D., Sahakian, B. J., Kurdziel, S., and Fleming, P., 1980, Aging, memorx, and the cholinergic system: A study of dichotic listening, Neurobiol. Aging 1: 39–43.PubMedCrossRefGoogle Scholar
  33. Drachman, D. A., Glosser, G., Fleming, P., and Longenecker, G., 1982, Memory decline in the aged: Treatment with lecithin and physostigmine, Neurology 32: 944–950.PubMedGoogle Scholar
  34. Dunne, M. P., and Hartley, L. R., 1985, The effect of scopolamine upon verbal memory: Evidence for an attentional hypothesis, Acta Psychol. 58: 205–217.CrossRefGoogle Scholar
  35. Edwards, J. A., Wesnes, K., Warburton, D. M., and Gale, A., 1985, Evidence of more rapid stimulus evaluation following cigarette smoking, Addict. Behav. 10: 113–126.PubMedCrossRefGoogle Scholar
  36. Flynn, D. D., and Mash, D. C, 1985, Nicotine receptors in human frontal and inferotemporal cortex: comparison between Alzheimer’s disease and the Normal, Soc. Neurosci. Abstr. 11: 1119–1120.Google Scholar
  37. Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowden, J. S., and Wilcock, G. K., 1985, Neurochemical studies of early-onset Alzheimer’s disease: Possible influence on treatment, N. Engl. J. Med. 313: 7–11.PubMedCrossRefGoogle Scholar
  38. Friedman, E., Sherman, K. A., Ferris, S. H., Reisberg, B., Bartus, R. T., and Schneck, M. K., 1981, Clinical response to choline plus piracetam in senile dementia: Relation to red-cell choline levels, N. Engl. J. Med. 304: 1490–1491.PubMedCrossRefGoogle Scholar
  39. Gauss, G., 1906, Geburten in Künstlichem Dämmerschlaf, Arch. Gynaekol. 78: 579–631.CrossRefGoogle Scholar
  40. Ghoneim, M. M., and Mewaldt, S. P., 1977, Studies on human memory: The interaction of diazepam, scopolamine and physostigmine, Psychopharmacology 52: 1–6.PubMedCrossRefGoogle Scholar
  41. Gibson, A. J., and Kendrick, D. C, 1979, The Kendrick Battery for the Detection of Dementia in the Elderly, NFER Publishing Company Ltd., Windsor, Berks, England.Google Scholar
  42. Hollister. L. E., 1968, Chemical Psychoses, Charles C Thomas, Springfield, IL.Google Scholar
  43. Kopelman, M. D., 1985, Multiple memory deficits in Alzheimer-type dementia: Implications for pharmacotherapy, Psychol. Med. 15: 527–541.PubMedCrossRefGoogle Scholar
  44. Kopelman, M. D., and Lishman, W. A., 1986, Pharmacological treatments of dementia (non-cholinergic), Br. Med. Bull. 42: 101–105.PubMedGoogle Scholar
  45. Lader, M., 1982, Psychopharmacology of old age, in: The Psychiatry of Late Life ( R. Levy and F. Post, eds.), Blackwell, Oxford, pp. 143–162.Google Scholar
  46. Lang, W., and Henke, H., 1983, Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients. Brain Res. 26: 271–280.CrossRefGoogle Scholar
  47. Liljequist, R., and Mattila, M. J., 1979, Effect of physostigmine and scopolamine on the memory functions of chess players, Med. Biol. 57: 402–405.PubMedGoogle Scholar
  48. Little, A., Levy, R., Chuaqui-Kidd, P., and Hand, D., 1985, A double-blind, placebo controlled trial of high-dose lecithin in Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry 48: 736–742.PubMedCrossRefGoogle Scholar
  49. McCarthy, G., and Donchin, E., 1981, A metric for thought: A comparison of P300 latency and reaction time, Science 211: 77–80.PubMedCrossRefGoogle Scholar
  50. Milar, K. S., 1981, Cholinergic drug effects on visual discriminations: A signal detection analysis, Psychopharmacology 74: 383–388.PubMedCrossRefGoogle Scholar
  51. Mohs, R. C, and Davis, K. L., 1982, A signal detectability analysis of the effect of physostigmine on memory in patients with Alzheimer’s disease, Neurobiol. Aging 3: 105–110.PubMedCrossRefGoogle Scholar
  52. Muramoto, O., Sugishita, M., and Ando, K., 1984, Cholinergic system and constructional praxis: A further study of physostigmine in Alzheimer’s disease, J Neurol. Neurosurg. Psychiatry 47: 485–491.PubMedCrossRefGoogle Scholar
  53. Pandit, S. K., and Dundee, J. W., 1970, Pre-operative amnesia, Anaesthesia 25: 493–499.PubMedCrossRefGoogle Scholar
  54. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergman, K., Gibson, P H., and Perry, R. H., 1978, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br. Med. J. 2: 1457–1459.PubMedCrossRefGoogle Scholar
  55. Peters, B. H., and Levin, H. S., 1979, Effects of physostigmine and lecithin on memory in Alzheimer disease, Ann. Neurol. 6: 219–221.PubMedCrossRefGoogle Scholar
  56. Petersen, R. C, 1977, Scopolamine induced learning failures in man, Psychopharmacology 52: 283–289.PubMedCrossRefGoogle Scholar
  57. Reisine, T. D., Yamamura, H. I., Bird, E. D., Spokes, E., and Enna, A. J., 1978, Pre- and postsynaptic neurochemical alterations in Alzheimer’s disease, Brain Res. 159: 477–481.PubMedCrossRefGoogle Scholar
  58. Rinne, J., Rinne, J. K., Laakso, K., Paljarvi, L., and Rinne, U. K., 1984, Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain, J. Neurol. Neurosurg. Psychiatry 47: 651–653.PubMedCrossRefGoogle Scholar
  59. Robbins, T. W., 1985, Neuropsychological evaluation of higher cognitive function in animals and man: Can psychopharmacology contribute to neuropsychological theory? in: Psychopharmacology: Recent Advances and Future Prospects (S. D. Iversen, ed.), Oxford University Press, Oxford, pp. 151–169.Google Scholar
  60. Robbins, T. W., and Iversen, S. D., 1973, Amphetamine-induced disruption of temporal discrimination by response disinhibition, Nature New Biol. 245: 191–192.PubMedGoogle Scholar
  61. Robbins, T. W., and Sahakian, B. J., 1983, Behavioral effects of psychomotor stimulant drugs: Clinical and neuropsychological implications, in: Stimulants: Neurochemical, Behavioral, and Clinical Perspectives ( I. Creese, ed.), Raven Press, New York. pp. 301–338.Google Scholar
  62. Rossor, M. N., Iversen, L. L., Reynolds, G. P., Mountjoy, C. Q., and Roth, M., 1984, Neurochemical characteristics of early and late onset types of Alzheimer’s disease, Br. Med. J. 288: 961–964.CrossRefGoogle Scholar
  63. Russell, R. W., 1966, Biochemical substrates of behaviour, in: Frontiers in Physiological Psychology ( R. W. Russell, ed.), Academic Press, New York, pp. 185–246.Google Scholar
  64. Sahakian, B. J., Joyce, E., and Lishman, W. A., 1987, Cholinergic effects on constructional abilities and on mnemonic processes: A case report, Psychol. Med. 17: 329–333.PubMedCrossRefGoogle Scholar
  65. Sitaram, N., Weingartner, H., and Gillin, J. C, 1978a, Human serial learning; enhancement with arecholine and choline and impairment with scopolamine, Science 201: 274–276.PubMedCrossRefGoogle Scholar
  66. Sitaram, N., Weingartner, H., Caine, E. D., and Gillin, J. C., 19786, Choline: Selective enhancement of serial learning and encoding of low imagery words in man, Life Sci. 22: 1555–1560.Google Scholar
  67. Smith, C. M., Swash, M., and Hart-Semple, S., 1985, Cholinergic drugs and memory, Interdiscipl. Topics Gerontol. 20: 126–132.Google Scholar
  68. Spencer, D. G., Pontecorvo, M. J., and Heise, G. A., 1985, Central cholinergic involvement in working memory: Effects of scopolamine on continuous nonmatching and discrimination performance in the rat, Behav. Neurosci. 99: 1049–1065.PubMedCrossRefGoogle Scholar
  69. Stanes, M. D., Brown, C. P., and Singer, G., 1976, Effect of physostigmine on Y-maze discrimination retention in the rat, Psychopharmacology 46: 269–276.CrossRefGoogle Scholar
  70. Sullivan, E. V., Shedlack, K.J., Corkin, S., and Growdon, J. H., 1982, Physostigmine and lecithin in Alzheimer’s disease, in: Alzheimer’s Disease: A Report of Progress (Aging, Vol. 19 ) ( S. Corkin, K. L. Davis,J. H. Growdon, E. Usdin, and R.J. Wurtman, eds.), Plenum Press, New York, pp. 361–367.Google Scholar
  71. Sunderland, T., Tariot, P., Murphy, D. L., Weingartner, H., Mueller, E. A., and Cohen, R. M., 1985, Scopolamine challenges in Alzheimer’s disease, Psychopharmacology 87: 247–249.PubMedCrossRefGoogle Scholar
  72. Thal, L. J., Fuld, P. A., Masur, D. M., and Sharpless, N. S., 1983, Oral physostigmine and lecithin improve memory in Alzheimer disease, Ann. Neurol. 13: 491–496.PubMedCrossRefGoogle Scholar
  73. Warburton, D. M., and Brown, K., 1971, Attenuation of stimulus sensitivity induced by scopolamine, Nature 230: 126–127.PubMedCrossRefGoogle Scholar
  74. Warburton, D. M., and Brown, K., 1972, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia 27: 275–284.PubMedCrossRefGoogle Scholar
  75. Warburton, D. M., and Wesnes, K., 1984, Drugs as research tools in psychology: cholinergic drugs and information processing, Neuropsychobiology 11: 121–132.PubMedCrossRefGoogle Scholar
  76. Weingartner, H., Sitaram, N., and Gillin, J. C, 1979, The role of the cholinergic nervous system memory consolidation, Bull. Psychonomic Soc. 13: 9–11.Google Scholar
  77. Wesnes, K., and Warburton, D. M., 1983, Effects of scopolamine on stimulus sensitivity and response bias in a visual vigilance task, Neuropsychobiology 9: 154–157.PubMedCrossRefGoogle Scholar
  78. Wesnes, K., and Warburton, D. M., 1984, Effects of scopolamine and nicotine on human rapid information processing performance, Psychopharmacology 82: 147–150.PubMedCrossRefGoogle Scholar
  79. Wesnes, K., Warburton, D. M., and Matz, B., 1983, Effects of nicotine on stimulus sensitivity and response bias in a visual vigilance task, Neuropsychobiology 9: 41–44.PubMedCrossRefGoogle Scholar
  80. Wettstein, A., and Spiegel, R., 1984, Clinical trials with the cholinergic drug RS 86 in Alzheimer’s disease (AD) and senile dementia of the Alzheimer type (SDAT), Psychopharmacology 84: 572–573.PubMedCrossRefGoogle Scholar
  81. White, P., Hiley, C. R., Goodhardt, M. J., Carrasco, L. H., Keet, J. P., Williams, I. E. I., and Bowen, D. M., 1977, Neocortical cholinergic neurons in elderly people, Lancet 1: 668–670.PubMedCrossRefGoogle Scholar
  82. Whitehouse, P. J., 1985, Alterations in cholinergic neurons and cholinergic neurotransmitter receptors in Alzheimer’s disease, Abstr. of the IVth World Congress Biol. Psychiatry 200.5: 115.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • B. J. Sahakian
    • 1
  1. 1.Section of Old Age Psychiatry, Department of Psychiatry, Institute of PsychiatryUniversity of LondonLondonEngland

Personalised recommendations