The Cholinergic Hypothesis of Memory: A Review of Animal Experiments

  • J. J. Hagan
  • R. G. M. Morris


Renewed interest in the idea that cholinergic neurons of the central nervous system play an important role in learning and/or memory has been stimulated by two key observations. First, patients with Alzheimer’s disease sustain severe losses of cortical choline acetyltransferase (ChAT) (Bowen et al., 1976; Davies and Maloney, 1976; Perry et al., 1978) which correlate with the severity of their cognitive deficits. Second, Alzheimer’s disease is associated with cell loss (Arendt et al., 1985; Jacobs et al., 1985; Whitehouse et al., 1981, 1982; Wilcock et al., 1983) and plaquelike lesions (Jacobs et al., 1985) in the nucleus basalis, an area from which cholinergic innervation of the cortical mantle arises. Such reports of cholinergic deterioration have stimulated many different types of research and have fostered the hypothesis that “these disturbances play an important role in the memory loss and related cognitive problems associated with old age and dementia …” (Bartus et al., 1984).


Passive Avoidance Cholinergic Neuron Basal Forebrain Radial Maze Spontaneous Alternation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsson, R., Gottfries, C. G., Roos, B. E., and Winblad, B., 1979, Changes in the brain catecholamines in patients with dementia of Alzheimer type, Br. J. Psychiatry 135: 216–222.PubMedGoogle Scholar
  2. Aigner, T. G., and Mishkin, M., 1986, The effects of physostigmine and scopolamine on recognition memory in monkeys, Behav. Neural Biol. 45: 81–87.PubMedGoogle Scholar
  3. Albanus, L., Hammarstrom, L., Sundwall, A., Ulberg, S., and Vango, B., 1968a, Distribution and metabolism of [3H]-atropine in mice, Acta Physiol. Scand. 73: 447–456.PubMedGoogle Scholar
  4. Albanus, L., Sundwall, A., Vangbo, B., and Windbladh, B., 1968b, The fate of atropine in the dog, Acta Pharmacol. Toxicol, 26: 571–582.Google Scholar
  5. Arai, H., Kosak, K., and Izvka, R., 1984, Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer type dementia, J. Neurochem. 43: 388–393.PubMedGoogle Scholar
  6. Arendt, T., Bigl, U., Tennesdtedi, A., and Arendt, A., 1985, Neuronal loss in different parts of the nucelus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neuroscience 14: 1–14.PubMedGoogle Scholar
  7. Aston-Jones, G., Shaver, R., and Dinan, T., 1984, Cortically projecting nucleus basalis neurons in rat are physiologically heterogenous, Neurosci. Lett, 46: 19–24.PubMedGoogle Scholar
  8. Bailey, E. L., Overstreet, D. H., and Crocker, A. D., 1986, Effects of intrahippocampal injections of the cholinergic neurotoxin AF64A on open-field activity and avoidance learning in the rat, Behav. Neural Biol, 45: 263–274.PubMedGoogle Scholar
  9. Baratti, C. M., Huygens, P., Mino, J., Merlo, A., and Gardella, I., 1979, Memory facilitation with post trial injection of oxotremorine and physostigmine in mice, Psychopharmacology 64: 85–88.PubMedGoogle Scholar
  10. Barrett, R. J., Leith, N. J., and Ray, O. S., 1972, Permanent facilitation of avoidance behaviour by d-amphetamine and scopolamine, Psychopharmacologia (Berlin) 25: 321–331.Google Scholar
  11. Bartolini, A., and Pepeu, G., 1967, Investigations into the acetylcholine output from the cerebral cortex of the cat in the presence of hyosine, Brit J. Pharmacol. Chemother. 31: 66–73.Google Scholar
  12. Bartus, R. T., 1978, Evidence for a direct cholinergic involvement in the Scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methyl phenidate with scopolamine, Pharmacol. Biochem. Behav. 9: 833–836.PubMedGoogle Scholar
  13. Bartus, R. T., 1979, Physostigmine and recent memory: Effects in young and aged non-human primates, Science 206: 1087–1089.PubMedGoogle Scholar
  14. Bartus, R. T., and Johnston, H. R., 1976, Short term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine, Pharmacol. Biochem. Behav. 5: 39–46.PubMedGoogle Scholar
  15. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408–417.PubMedGoogle Scholar
  16. Bartus, R. T., Dean, R. L., Flicker, C., and Beer, B., 1983, Behavioural and pharmacological studies using animal models of aging: Implications for studying and treating dementia of Alzheimer type, Banbury Rep. 15: 207–218.Google Scholar
  17. Bartus, R. T., Dean, R. L., and Beer, B., 1984, Cholinergic precursor therapy for geriatric cognition: Its past, its present and a question of its future, in: Nutrition in Gerontology ( J. M. Ordy, D. Harman, and R. AlFin-Slater, eds.), Raven Press, New York, pp. 191–225.Google Scholar
  18. Bartus, R. T., Flicker, C, Dean, R. L., Pontecorvo, M. J., Figueriedo, J. C, and Fisher, S. K., 1985, Selective memory loss following nucleus basalis lesions: Long term behavioural recovery despite persistent cholinergic deficiencies, Pharmacol. Biochem. Behav. 23: 125–135.PubMedGoogle Scholar
  19. Bartus, R. T., Pontecorvo, M. J., Flicker, C, Dean, R. L., and Figueiredo, J. C, 1986, Behavioural recovery following bilateral lesions of the nucleus basalis does not occur spontaneously, Pharmacol. Biochem. Behav. 24: 1287–1292.PubMedGoogle Scholar
  20. Beani, L., Bianchi, C, and Megazzini, P., 1964, Regional changes of acetylcholine and choline acetylase activity in the guinea-pig’s brain after scopolamine, Experientia 15 (12): 677 - 678.Google Scholar
  21. Beatty, W. W., and Bierley, R. A., 1985, Scopolamine degrades spatial working memory but spares spatial reference memory: Dissimilarity of anticholinergic effect and restriction of distal visual cues. Pharmacol. Biochem. Behav. 23: 1–6.PubMedGoogle Scholar
  22. Benardo, L. J., and Prince, D. A., 1982, Cholinergic pharmacology of mammalian hippocampal pyramidal cells, Neuroscience 7: 1703–1712.PubMedGoogle Scholar
  23. Beninger, R. J., Jhamandas, K., Boegman, R. J., and El-Drefawy, S. R., 1986, Effects of scopolamine and unilateral lesions of the basal forebrain on T-maze spatial discrimination and alternation in rats, Pharmacol. Biochem. Behav. 24: 1353–1360.PubMedGoogle Scholar
  24. Berger, B. D., and Stein, L., 1969, An analysis of the learning deficits produced by scopolamine, Psychopharmacologia (Berlin) 14: 271–283.Google Scholar
  25. Berman, R. F., Grosland, R. D., Jenden, D. J., and Altman, H. J., 1983, Lesions of the nucleus basalis of Meynert impair memory in Sprague-Dawley rats, Soc. Neurosci. Abstr. 29: 10.Google Scholar
  26. Biederman, G. B., 1970, Forgetting of an operant response: Physostigmine produced increases in escape latency in rats as a function of time of injection, Q. J. Exp. Psychol, 22: 384–388.PubMedGoogle Scholar
  27. Bignami, G., Amorico, L., Frontali, M., and Rosic, N., 1971, Central cholinergic blockade and two way avoidance acquisition: The role of response disinhibition, Physiol. Behav. 7: 461–470.PubMedGoogle Scholar
  28. Birdsall, N.J. M., and Hulme, E. C, 1983, Muscarinic receptor subclasses, Trends Neursci. 6: 459–463.Google Scholar
  29. Bjorklund, A., and Stenevi, U., 1977, Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurons, Cell. Tiss. Res. 185: 289–302.Google Scholar
  30. Bjorklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E., and Iversen, S. D., 1980, Reinnervation of the denervated striatum by substantia nigra transplants: Functional recovery as revealed by pharmacological and sensorimotor testing, Brain Res. 199: 307–333.PubMedGoogle Scholar
  31. Bjorklund, A., Stenevi, U., Dunnett, S. B., and Iversen, S. D., 1981, Functional reactivation of the de-afferented neostriatum by nigral transplants, Nature (London) 289: 497–499.Google Scholar
  32. Blaker, W. D., Peruzzi, G., and Costa, E., 1984, Behavioural and neurochemical differentiation of specific projections in the septal-hippocampal cholinergic pathway of the rat, Proc. Natl. Acad. Set. USA 81: 1880–1882.Google Scholar
  33. Bland, B. H., Seto, M. G., Sinclair, B. R., and Fräser, S. M., 1984, The pharmacology of hippocampal theta cells: Evidence that the sensory processing correlate is cholinergic, Brain Res. 299: 121–131.PubMedGoogle Scholar
  34. Blozovski, D., and Hennocq, N., 1982, Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampal-entorhinal area upon passive avoidance learning in young rats, Psychopharmacology 76: 351–358.PubMedGoogle Scholar
  35. Bohdanecky, Z., and Jarvik, M. E., 1967, Impairment of one trial passive avoidance learning in mice by scopolamine, scopolamine methyl bromide and physostigmine, Int. J. Neuropharmacol, 6: 217–222.PubMedGoogle Scholar
  36. Bohdanecky, Z., Jarvik, M. E., and Carley, J. C, 1967, Differential impairment of delayed matching in monkeys by scopolamine and scopolamine methylbromide, Psychophar-macologia (Berlin) 11: 293–299.Google Scholar
  37. Bowen, D. M., and Marek, K. L., 1982, Evidence for the pharmacological similarity between the central presynaptic muscarinic autoreceptor and postsynaptic muscarinic receptors, Br. J. Pharmacol. 75: 367–372.PubMedGoogle Scholar
  38. Bowen, D. M., White, P., Flack, R. H. A., Smith, C. B., and Davison, A. N., 1974, Brain-decarboxylase activities as indices of pathological damage in senile dementia, Lancet 1: 1247–1249.PubMedGoogle Scholar
  39. Bowen, D. M., Smith, C. B., White, P., and Davison, A. N., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiatrophies, Brain 99: 459–496.PubMedGoogle Scholar
  40. Brito, G. N. O., Davis, B. J., Stopp, L. C., and Stanton, M. E., 1983, Memory and the septo-hippocampal cholinergic system in the rat, Psychopharmacology 81: 315–320.PubMedGoogle Scholar
  41. Brown, B., Haegerstrom-Portnoy, Adams, A. J., Jones, R. T., and Jampolsky, A., 1982, Effects of an anticholinergic drug, Benactyzine Hydrochloride, on vision and vision performance, Aviation Space Environ. Med. 53: 759–765.Google Scholar
  42. Brown, D. A., and Adam, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive current in a vertebrate neurone, Nature 283: 673–674.PubMedGoogle Scholar
  43. Bures, J., Bohdanecky, Z., and Weiss, I., 1962, Physostigmine induced hippocampal theta activity and learning in rats. Psychopharmacologia 3: 254–263.PubMedGoogle Scholar
  44. Buresova, O., and Bures, J., 1982, Radial maze as a tool tor assessing the effects of drugs on the working memory of rats, Psychopharmacology 77: 268–271.PubMedGoogle Scholar
  45. Buresova, O., Bures, J., Bohdanecky, Z., and Weiss, T., 1964, Effect of atropine on learning, extinction, retention and retrieval in rats, Psychopharmacologia 5: 255–263.PubMedGoogle Scholar
  46. Calhoun, W. H., and Smith, A. A.. 1968, Effects of scopolamine on acquisition of passive avoidance, Psychopharmacologia (Berlin) 13: 201–209.Google Scholar
  47. Calhoun, W. H., Smith, A. A., and Bauer, R., 1970, Scopolamine’s effects on passive avoidance, Psyclumom, Sci 21: 165–166.Google Scholar
  48. Calloway, E., and Band, R. I., 1958, Some psyc hophai macological effects of atropine, Arch. Neurol. Psychiatiy (Chicago) 79:91–102.Google Scholar
  49. Carew, T. J., 1972, Do passive avoidance tasks permit assessment of retrograde amnesia in rats? J. Comp. Physiol. Psychol. 72:267–271.Google Scholar
  50. Carlton, P. L., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70: 19–39.PubMedGoogle Scholar
  51. Casamenti, F., Bracgo, L., Bartolini, L., and Pepeu, G., 1985, Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei, Brain Res. 338: 45–52.PubMedGoogle Scholar
  52. Caulfield, M. P., and Straughan, D. W., 1983, Muscarinic receptors revisited, Trends Neurosci. 6: 73–75.Google Scholar
  53. Caulfield, M. P., Higgins, G. A., and Straughan, D. W., 1983, Central administration of the muscarinic receptor subtype—Selective antagonist pirenzepine selectively impairs passive avoidance learning in the mouse, J. Pharm. Pharmacol. 35: 131–132.PubMedGoogle Scholar
  54. Cheal, M. L., 1981, Scopolamine disrupts maintenance of attention rather than memory processes, Behav. Neural Biol. 33: 163–187.PubMedGoogle Scholar
  55. Chiappetta, L., and Jarvik, M. E., 1969, Comparison of learning impairment and activity depression produced by two classes of cholinergic blocking drugs, Arch. Int. Pharmacodyn. Ther. 179: 161–166.PubMedGoogle Scholar
  56. Clark, C. V. H., 1970, Effect of hippocampal and neocortical ablation on scopolamine-induced activity in the rat, Psychopharmacologia (Berlin) 17: 289–301.Google Scholar
  57. Clarke, D. J., Gage, F. H., and Bjorklund, A., 1986, Formation of cholinergic synapses by intrahippocampal septal grafts as revealed by choline acetyltransferase immunocyto-chemistry, Brain Res. 369: 151–162.PubMedGoogle Scholar
  58. Cole, A. E., and Nicoll, R. A., 1984, The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells, Brain Res. 305: 283–290.PubMedGoogle Scholar
  59. Cortes, R., and Palagios, J. M., 1986, Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies, Brain Res. 362: 227–238.PubMedGoogle Scholar
  60. Cortes, R., Probst, A., Tobler, H. J., and Palagios, J. M., 1986, Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies, Brain Res. 362: 239–253.PubMedGoogle Scholar
  61. Cox, T., and Tye, N., 1973, Effects of physostigmine on the acquisition of a position discrimination in rats, Neuropharmacology 12: 477–484.PubMedGoogle Scholar
  62. Cox, T., and Tye, N., 1974, Effects of physostigmine on the maintenance of discrimination behaviour in rats, Neuropharmacology 13: 205–210.PubMedGoogle Scholar
  63. Coyle, J. T., and Schwarcz, R., 1983, The use of excitatory amino acids as selective neurotoxins, in: Handbook of Chemical Neuroanatomy, Vol. 1, methods in chemical neuroanatomy ( A. Bjorklund and T. Hokfeldt, eds.), Elsevier, New York.Google Scholar
  64. Crow, T. J., Cross, A. J., Cooper, S. J., Deakin, J. F. W., Ferrier, I. N., Johnson, J. A., Joseph, M. H., Owen, F., Poulter, M., Lofthouse, R., Corsellis, J. A. N., Chambers, D. R., Blessed, G., Perry, E. K., Perry, R. H., and Tomlinson, B. E., 1984, Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression and suicides, Neuropharmacology 23: 1561–1569.PubMedGoogle Scholar
  65. Cuello, A. C, and Sofroniew, M. V., 1984, The anatomy of the CNS cholinergic neurons, Trends Neurosci. 7: 74–78.Google Scholar
  66. Dale, R. H. I., and Goodale, M. A., 1979, Effect of cortex lesions on radial maze performance in rats, Soc. Neurosci. Abstr. 4: 114.Google Scholar
  67. Daly, H. B., 1968, Disruptive effects of scopolamine on fear conditioning and on instrumental escape learning, J. Comp. Physiol. Psychol. 66: 579–583.PubMedGoogle Scholar
  68. Daniloff, J. K., Wells, J., and Ellis, J., 1984, Cross-species septal transplants: Recovery of choline acetyltransferase activity, Brain Res. 324: 151–154.PubMedGoogle Scholar
  69. Daniloff, J. K., Bodony, R. P., Low, W. C, and Wells, J., 1985, Cross-species embryonic septal transplants: Restoration of conditioned learning behaviour, Brain Res. 346: 176–180.PubMedGoogle Scholar
  70. Davies, P., and Maloney, A.J. F., 1976, Selective loss of cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403.PubMedGoogle Scholar
  71. Davies, P., Katzman, R., and Terry, R. D., 1980, Reduced somatostatin like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia, Nature 288: 279–280.PubMedGoogle Scholar
  72. Davis, H. P., and Squire, L. R., 1984, Protein synthesis and memory, Psychol. Bull. 96: 518–559.PubMedGoogle Scholar
  73. Deadwyler, S. A., Montgomery, D., and Wyers, E. J., 1972, Passive avoidance and carbachol excitation of the caudate nucleus, Physiol. Behav. 8: 631–635.PubMedGoogle Scholar
  74. Dember, W. N., and Fowler, H., 1958, Spontaneous alternation behaviour, Psychol. Bull. 55: 412–428.PubMedGoogle Scholar
  75. Deutsch, J. A., 1971, The cholinergic synapse and site of memory, Science 174: 788–796.PubMedGoogle Scholar
  76. Deutsch, J. A., 1983, The cholinergic synapse and the site of memory, in: The Physiological Basis of Memory, 2nd ed. ( J. Anthony Deutsch, ed.), Academic Press, London, pp. 367–384.Google Scholar
  77. Deutsch, J. A., and Leibowttz, S. F., 1966, Amnesia or reversal of forgetting by anticholinesterase, depending simply on time of injection, Science 153: 1017–1018.PubMedGoogle Scholar
  78. Deutsch, F. A., and Lutzky, H., 1967, Memory enhancement by anticholinesterase as a function of initial learning, Nature 213: 742.Google Scholar
  79. Deutsch, J. A., and Rocklin, K. W., 1967, Amnesia induced by scopolamine and its temporal variations, Nature 216: 89–90.PubMedGoogle Scholar
  80. Deutsch, J. A., and Rocklin, K. W., 1972, Anticholinesterase amnesia as a function of massed or spaced retest, J. Comp. Physiol. Psychol. 81: 64–68.PubMedGoogle Scholar
  81. Deutsch, J. A., Hamburg, M. D., and Dahl, H., 1966, Anticholinesterase-induced amnesia and its temporal aspects. Science 151: 221–223.PubMedGoogle Scholar
  82. Dews, P. B., 1957, Studies on behavior: III. Effects of scopolamine on reversal of a discriminatory performance in pigeons, J. Pharmacol. Exp. Ther. 119: 343–353.PubMedGoogle Scholar
  83. Dilts, S. L., and Berry, C. A., 1967, Effect of cholinergic drugs on passive avoidance in the mouse, J. Pharmacol. Exp. Ther. 158: 279–285.PubMedGoogle Scholar
  84. Divac, T., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, brain stem and olfactory bulb. Review of some functional correlates, Brain Res. 93: 385–398.PubMedGoogle Scholar
  85. Domer, F. R., and Schleuer, F. W., 1960, Investigations of the amnesic properties of scopolamine and related compounds, Arch. Int. Pharmacodyn 127: 449–458.PubMedGoogle Scholar
  86. Doty, B. A., and Johnston, M. M., 1966, Effect of posttrial eserine administration, age and task difficulty on avoidance conditioning in rats, Psychonom. Sci 6: 101–102.Google Scholar
  87. Douglas, R. J., 1966, Cues for spontaneous alternation, J. Comp. Physiol. Psychol. 62: 171–183.PubMedGoogle Scholar
  88. Douglas, R. J., 1975, The development of hippocampal function: Implications for theory and for therapy, in: The Hippocampus, Vol. 2 ( R. L. Isaacson and K. H., Pribram, eds.), Plenum Press, New York, pp. 327–361.Google Scholar
  89. Douglas, R. J., and Isaacson, R. L., 1966, Spontaneous alternation and scopolamine, Psychon. Sci 4: 283–284.Google Scholar
  90. Douglas, R. J., and Truncer, P. C, 1976, Parallel but independent effects of pentabarbitol and scopolamine on hippocampus-related behaviour, Behav. Biol. 18: 359–367.PubMedGoogle Scholar
  91. Downs, D., Cardozo, C, Schneiderman, N., Yehle. A. L., Vandercar, D. H., and Zwilling, CT., 1972, Central effects of atropine upon aversive classical conditioning in rabbits, Psychopharmacologia 23: 319–333.Google Scholar
  92. Dravid, A. R., and van Deusen, E. B., 1983, Recovery of choline acetyltransferase and acetylcholinesterase activities in the ipsilateral hippocampus following unilateral, partial transection of the fimbria in rats, Brain Res. 277: 169–174.PubMedGoogle Scholar
  93. Dravid, A. R., and van Deusen, E. B., 1984, Recovery of enzyme markers for cholinergic terminals in septo-temporal regions of the hippocampus following selective fimbrial lesions in adult rats, Brain Res. 324: 119–128.PubMedGoogle Scholar
  94. Dubois, B., Mayo, W., Agid, Y., Lemoal, M., and Simon, H., 1985, Profound disturbances of spontaneous and learned behaviors following lesions of the nucleus basalis magno¬cellularis in the rat, Brain Res. 338: 249–258.PubMedGoogle Scholar
  95. Dudar, J. D., Whishaw, I. Q., and Szerb, J. C, 1979, Release of acetylcholine from the hippocampus of freely moving rats during sensory stimulation and running, Neuropharmacology 18: 673–678.PubMedGoogle Scholar
  96. Dunnett, S. B., Bjorklund, A., Stenevi, U., and Iversen, S. D., 1981, Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions, Brain Res. 215: 147–161.PubMedGoogle Scholar
  97. Dunnett, S. B., Low, W. C, Iversen, S. D., Stenevi, U., and Bjorklund, A., 1982, Septal transplants restore maze learning in rats with fornix-fimbria lesions, Brain Res. 251: 335–348.PubMedGoogle Scholar
  98. Dunnett, S. B., Toniolo, G., Fine, A., Ryan, C. N., Bjorklund, A., and Iversen, S. D., 1985, Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis. II. Sensorimotor and learning impairments, Neuroscience 16: 785–799.Google Scholar
  99. Eckerman, D. A., Winford, A. G., Edwards, J. D., Macphail, R. C, and Gage, M. I., 1980, Effects of scopolamine, pentobarbital and amphetamine on radial arm maze performance in the rat, Pharmacol. Biochem. Behav. 12: 595–602.PubMedGoogle Scholar
  100. Eglen, R. M., and Whiting, R. C, 1985, Muscarinic receptors subtypes: Problems of classification, Trends Pharmacol. Sci 6: 357–358.Google Scholar
  101. Ehlert, F. J., Roeske, W. R., and Yamamura, H. L, 1982, Muscarinic cholinergic receptor heterogeneity, Trends Neurosci. 5: 336–339.Google Scholar
  102. El-Defrawy, S. R., Boegman, R. J., Jhamandas, K., Beninger, R. J., and Shipton, L. (1986) Lack of recovery of cortical cholinergic function following quinolinic or ibotenic acid injections into the nucleus basalis magnocellularis in rats, Exp. Neurol. 91: 628–633.PubMedGoogle Scholar
  103. Ellis, J. E., and Hoss, W., 1980, Analysis of regional variations in the affinities of muscarinic agonists in the rat brain, Brain Res. 193: 189–198.PubMedGoogle Scholar
  104. EvangelisticA, A. M., and Izquierdo, I., 1971, The effect of pre and posttrial amphetamine injections on avoidance responses of rats, Psychopharmacologia (Berlin) 20: 42–47.Google Scholar
  105. EvangelisticaA, A. M., and Izquierdo, I., 1972, Effects of atropine on avoidance condition: Interaction with nicotine and comparison with N-methyl atropine, Psychopharmacologia (Berlin) 27: 241–248.Google Scholar
  106. Evans, H. L., 1975, Scopolamine effects on visual discrimination: Modifications related to stimulus control, J Pharmacol. Exp. Ther. 195: 105–113.PubMedGoogle Scholar
  107. Farrer, D. N., Yochmowitz, M. G., Mattsson, J. L., Lof, N. E., and Bennett, C. T., 1982, Effect of Benactyzine on an equilibrium and multiple response task in rhesus monkeys, Pharmacol. Biochem. Behav. 16: 605–609.Google Scholar
  108. Fass, B., and Ramirez, J. J., 1984, Effects of ganglioside treatments on lesion-induced behavioral impairments and sprouting in the CNS, J Neurosci. Res. 12: 445–458.PubMedGoogle Scholar
  109. Feigley, D. A., 1974, Effects of scopolamine on activity and passive avoidance learning in rats of different ages, J. Comp. Physiol. Psychol. 87: 26–36.PubMedGoogle Scholar
  110. Feigley, D. A., and Hamilton, L. W., 1971, Response to novel environment following septal lesions or cholinergic blockade in rats, J. Comp. Physiol. Psychol. 76: 496–504.PubMedGoogle Scholar
  111. Feigley, D. A., and Spear, N. E., 1970, Effect of age and punishment condition on long term retention by the rat of active and passive avoidance learning, J Comp. Physiol. Psychol. 73: 515–526.PubMedGoogle Scholar
  112. Feigley, D. A., Beakey, W., and Saynisch, M. J., 1976, Effect of scopolamine on the reactivity of the albino rat to foodshock, Pharmacol. Biochem. Behav. 4: 255–258.PubMedGoogle Scholar
  113. Fibiger, H. C, 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev. 4: 327–388.Google Scholar
  114. Fine, A., Dunnett, S. B., Bjorklund, A., Clarke, D., and Iversen, S. D., 1985, Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis. I. Biochemical and anatomical observations, Neuroscience 16: 769–786.PubMedGoogle Scholar
  115. Fisher, A., and Hanin, I., 1980, Choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction, Life Sci 27: 1615–1634.PubMedGoogle Scholar
  116. Fisher, A., Mantione, C. R., Abraham, D. J., and Hanin, L, 1982, Long term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AFG4A) in vivo, J. Pharmacol. Exp. Ther. 22: 140–149.Google Scholar
  117. Flicker, C, and Geyer, M. A., 1982ß, Behavior during hippocampal microinfusions. II. Muscarinic locomotor activation, Brain Res. Rev. 4: 105–127.Google Scholar
  118. Flicker, C, and Geyer, M. A., 1982b, Behaviour during hippocampal microinfusions. IV. Transmitter interactions, Brain Res. Rev. 4: 137–147.Google Scholar
  119. Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K., and Barels, R. T., 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat, Pharmacol. Biochem. Behav. 18: 973–981.PubMedGoogle Scholar
  120. Flood, J. F., and Gherkin, A., 1986, Scopolamine effects on memory retention in mice: A model of dementia? Behav. Neural Biol. 45: 169–184.PubMedGoogle Scholar
  121. Flood, J. F., Landry, D. W7., and Jarvik, M. E., 1981, Cholinergic receptor interactions and their effects on long term memory processing, Brain Res. 215: 177–185.Google Scholar
  122. Flood, J. F., Smith, G. E., and Gherkin, A., 1984a, Memory retention: effect of prolonged cholinergic stimulation in mice, Pharmacol. Biochem. Behav. 20: 161–163.PubMedGoogle Scholar
  123. Flood, J. F., Smith, G. E., and Gherkin, A., 1984b, Memory retention test performance in mice: Improvement by chronic oral cholinergic drug treatment, Pharmacol, Biochem. Behav. 21: 169–173.PubMedGoogle Scholar
  124. Flood, J. F., Smith, G. E., and Gherkin, A., 1985, Memory enhancement: Supra-additive effect of subcutaneous cholinergic drug combinations in mice, Psychopharmacology 86: 61–67.PubMedGoogle Scholar
  125. Forno, L. S., 1966, Pathology of parkinsonism, J. Neurosurg. 24: 266–271.Google Scholar
  126. Frey, K. A., Ehrenkaufer, R. L. E., and Agranoef, B. W., 1985, Quantitative In vivo receptor binding. II. Autoradiographic imaging of muscarinic cholinergic receptors, J. Neurosci. 5:2407–2414.PubMedGoogle Scholar
  127. Friedman, E., Lerer, B., and Küster, J., 1983, Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning, Pharmacol, Biochem, Behav, 19:309-312.Google Scholar
  128. Funderbunk, W. H., and Case, T. J., 1947, Effect of parasympathetic drugs on the conditional response, J Neurophysiol. 10: 179–188.Google Scholar
  129. Gaffan, D., 1972, Loss of recognition memory in rats with lesions of the fornix, Neuropsychologia 10: 327–341.PubMedGoogle Scholar
  130. Gaffan, D., 1974, Recognition impaired and association intact in the memory of monkeys after transection of the fornix, J. Comp. Physiol. 86:1100–1109.Google Scholar
  131. Gaffan, D., 1985, Hippocampus: Memory, habit and voluntary movement, Philosoph. Trans. Roy. Soc. (London) (Series B) 308: 87–99.Google Scholar
  132. Gage, F. H., Bjorklund, A., Stenevi U., Dunnett, S. B., and Kelly, P. A. T., 1984a, Intrahippocampal septal grafts ameliorate learning impairments m aged rats, Science 225: 533–536.PubMedGoogle Scholar
  133. Gage, F. H., Dunnett, S. B., and Bjorklund, A., 19846, Spatial learning and motor deficits in aged rats, Neurobiol. Aging 5: 43–48.PubMedGoogle Scholar
  134. Gash, D., Sladek, J. R., and Sladek, S. D., 1980, Functional development of grafted vasopressin neurons, Science 210: 1367–1369.PubMedGoogle Scholar
  135. Geddes, J. W., Monaghan, D. T., Cotman, C. W., LotI, I. T., Kim, R. C, and Chui, H. C, 1985, Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230: 1179–1181.Google Scholar
  136. George, G., and Mellanby, J., 1974, A further study on the effect of physostigmine on memory in rats, Brain Res. 81: 133–144.PubMedGoogle Scholar
  137. George, G., Mellanby, H., and Mellanby, J., 1977, When does inhibition of brain acetylcholinesterase cause amnesia in rats? Brain Res. 122: 568–574.PubMedGoogle Scholar
  138. Giarman, N. J., and Pepeu, G., 1964, The influence of centrally active cholinolytic drugs on brain acetylcholine levels, Br. J. Pharmacol, 23: 123–130.Google Scholar
  139. Gil, D. W., and Wolfe, B. B., 1985, Pirenzepine distinguishes between muscarinic receptor mediated phosphoinositide breakdown and inhibition of adenylate cyclase, J Pharmacol. Exp. Ther. 232: 608–616.PubMedGoogle Scholar
  140. Glick, S. D., and Greenstein, S., 1972, Differential effects of scopolamine and mecamyla-mine on passive avoidance behaviour, Life Sci 11: 169–179.Google Scholar
  141. Glick, S. D., and Jarvik, M. E., 1970, Differential effects of amphetamine and scopolamine on matching performance of monkeys with lateral frontal lesions, J. Comp. Physiol. Psychol. 73:307–313.Google Scholar
  142. Glick, S. D., and Zimmerberg, B., 1971, Comparative learning impairment and amnesia by scopolamine, phencyclidine and ketamine, Psychonom. Sci 25: 165–166.Google Scholar
  143. Glick, S. D., Crane, A. M., Barker, L. A., and Mittag, T. W., 1975, Effects of N-hydroxy-ethyl-pyrrolidinium methiodide, a choline analogue, on passive avoidance behaviour in mice, Neuropharmacology 14: 561–564.PubMedGoogle Scholar
  144. Goddard, G. V., 1969, Analysis of avoidance conditioning following cholinergic stimulation of amygdala in rats, J. Comp. Physiol. Psychol. 68: 1–18.PubMedGoogle Scholar
  145. Godding, P. R., Rush, J. R., and Beatty, W. M., 1982, Scopolamine does not disrupt spatial working memory in rats, Pharmacol. Biochem. Behav. 16: 919–923.PubMedGoogle Scholar
  146. Gold, P. E., 1986, The use of avoidance training in studies of modulation of memory storage, Behav. Neural Biol. 46: 87–98.PubMedGoogle Scholar
  147. Gold, P. E., and Zornetzer, S. F., 1983, The mnemon and its juices: Neuromodulation of memory processes, Behav. Neural Biol. 38: 151–189.PubMedGoogle Scholar
  148. Goldberg, M. E., Johnson, H. E., and Knaak, J. B., 1965, Inhibition of discrete avoidance behavior by three anticholinesterase agents, Psychopharmacologia 7:72–76. PubMedGoogle Scholar
  149. Goodman, L. S., and Gilman, A., 1970, The Pharmacological Basis of Therapeutics, 4th ed., Macmillan, New York.Google Scholar
  150. Gosselin, R. G., Gabourel, J. D., Kalser, S., and Wills, J. H., 1955, The metabolism of C14-labelled atropine and tropic acid in mice, J. Pharmacol. Exp. Ther. 115: 217–229.PubMedGoogle Scholar
  151. Grant, M., 1974, Cholinergic influences on habituation of exploratory activity in mice, J. Comp. Physiol. Psychol. 86: 853–857.PubMedGoogle Scholar
  152. Grecksch, G., Ott, T., and Matthies, H., 1978, Influence of post training intrahippocam-pally applied oxotremorine on the consolidation of a brightness discrimination, Pharmacol. Biochem. Behav. 8: 215–218.Google Scholar
  153. Greenamyre, J. T., Penney, J. B., Young, A. B., D’amato, C. J., Hicks, S. P., and Shoulson, I., 1985, Alterations in L-glutamate binding in Alzheimer’s and Huntingdon’s diseases, Science 227: 1496–1499.PubMedGoogle Scholar
  154. Gruber, R. P., Stone, G. C, and Reed, D. R., 1967, Scopolamine induced anterograde amnesia, Int. J. Neuropharmacol. 6: 187–190.PubMedGoogle Scholar
  155. Hagan, J. J., Tweedie, F., and Morris, R. G. M., 1986, Lack of task specificity and absence of post-training effects of atropine upon learning, Behav. Neurosci. 100: 483–493.PubMedGoogle Scholar
  156. Hagan, J. J., Jansen, J. H. M., and Broekkamp, C. L. E., 1987a, Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology (in press).Google Scholar
  157. Hagan, J. J., Salamone, J. D., Simpson, J., Iversen, S. D., and Morris, R. G. M., 1987b, Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis, Behav. Brain Res. (in press).Google Scholar
  158. Halliday, M. S., 1968, Exploratory behaviour, in: Analysis of Behavioural Change ( L. Weiskrantz, ed.), Harper & Row, London, pp. 107–126.Google Scholar
  159. Halliwell, J. V., and Adams, P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedGoogle Scholar
  160. Hamburg, M. D., 1967, Retrograde amnesia produced by intraperitoneal injection of physostigmine, Science 156: 973–974.PubMedGoogle Scholar
  161. Hamilton, L. W., and Grossman, S. P., 1969, Behavioral changes following disruption of central cholinergic pathways, J. Comp. Physiol. Psychol. 69: 76–82.PubMedGoogle Scholar
  162. Hamilton, L. W., Mccleary, R. A., and Grossman, S. P., 1968, Behavioral effects of cholinergic septal blockade in the cat, J. Comp. Physiol. Psychol. 66: 563–568.PubMedGoogle Scholar
  163. Hammer, R. S., and Giachetti, A., 1982, Muscarinic receptor subtypes: Ml and M2 biochemical and functional characterisation, Life Sci 31: 2991–2998.PubMedGoogle Scholar
  164. Hammer, R. S., Berrie, C. P., Birdsall, N.J. M., Burgen, A. S. V., and Hulme, E. C, 1980, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283: 90–92.PubMedGoogle Scholar
  165. Harley, C. W., 1979, Arm choices in a sunburst maze: Effects of hippocampectomy in the rat, Physiol. Behav. 23:283–290.PubMedGoogle Scholar
  166. Haroutunian, V., Kanof, P., and Daves, K. L., 1985a, Pharmacological alleviation of cholinergic lesion induced memory deficits in rats, Life Sci 37: 945–952. PubMedGoogle Scholar
  167. Haroutunian, V., Barnes, E., and Davis, K. L., 19856, Cholinergic modulation of memory in rats, Psychopharmacology 87:266–271.Google Scholar
  168. Harris, L. S., Dewey, W. L., Howes, J. F., Kennedy, J. S., and Pars, H., 1969, Narcotic antagonist analgesics: Interactions with cholinergic systems, J. Pharmacol. Exp. Ther. 169: 17–22Google Scholar
  169. Hartgraves, S. L., Mensaii, P. L., and Kelly, P. H., 1982, Regional decreases of cortical choline acetyl transferase after lesions of the septal area and in the area of nucleus basalis magnocellularis, Neuroscience 7: 2369–2376.PubMedGoogle Scholar
  170. Harvey, J. A., Gormezano, I., and Cool-Hauser, V. A., 1983, Effects of scopolamine and methylscopolamine on classical conditioning of the rabbit nictitating membrane response, J. Pharmacol. Exp. Ther. 225: 42–49.PubMedGoogle Scholar
  171. Haycock, F. W., Deadwyler, S. A., Sideroee, S. I., and McGaugh, J. L.. 1973, Retrograde amnesia and cholinergic systems in the caudate putamen complex and dorsal hippocampus of the rat, Exp. Neurol. 41: 201–213.PubMedGoogle Scholar
  172. Hearse, E., 1959, Effects of scopolamine on discriminated responding in the rat, y. Pharmacol, Exp. Ther. 126: 349–358.Google Scholar
  173. Heise, G. A., Hrabrich, B., Lilie, N. L., and Martin, R. A., 1975, Scopolamine effects on delayed spatial alternation in the rat, Pharmacol, Biochem. Behav. 3: 993–1002.Google Scholar
  174. Heise, G. A., Conner, R., and Martin, R. A., 1976, Effects of scopolamine on variable interval spatial alternation and memory in the rat, Psychopharmacology 49: 131–137.PubMedGoogle Scholar
  175. Hepler, D., Wenk, G., and Olton, D., 1983, Lesions in n. basalis of Meynert and medial septal area of rats produce similar memory impairments in three behavioural tasks, Soc. Neurosci. Abstr. 189. 13.Google Scholar
  176. Hepler, D. J., Oleon, D. S., Wenk, G. L., and Coyle, J. 1., 1985a, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments, J. Neurosci. 5: 866–873.Google Scholar
  177. Hepler, D. J., Wenk, G. L., Cribbs, B. L., Olton, D. S., and Coyle, J. I., 19856, Memory impairment following basal forebrain lesions, Brain Res. 346: 8–14.Google Scholar
  178. Hiraga, Y., and Iwasaki, T., 1984, Effects of cholinergic and monoaminergic antagonists and tranquilizers upon spatial memory in rats, Pharmacol. Biochem. Behav. 20: 205–207.PubMedGoogle Scholar
  179. Holloway, F. A., and Wansley, R., 1973, Multiphasic retention deficits at periodic intervals after passive avoidance learning. Science 180:208– 210.Google Scholar
  180. Houser, V. P., and Houser, F. L., 1973, The alteration of aversive thresholds with cholinergic and adrenergic agents, Pharmacol. Biochem, Behav. 1: 433–444.Google Scholar
  181. Hunter, B., Zorneizer, S. F., Jarvik, M. E., and J. L. McGaugh, 1977, Modulation of learning and memory: Effects of drugs influencing neurotransmitters, in: Handbook of Psychopharmacology, Vol. 8, Drugs, Neurotransmitters and Behavior ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York and London, pp. 531–567.Google Scholar
  182. Huppert, F. A., and Deutsch, J. A., 1969, Improvement in memory with time, Q.J. Exp. Psychol, 21: 267–271.Google Scholar
  183. Ireson, J. D., 1970, A comparison of the antinociceptive actions of cholinomimetic and morphine-like drugs, Br. J. Pharmacol, 40: 92–101.PubMedGoogle Scholar
  184. Iversen, S. D., 1983, Brain lesions and memory in animals: A reappraisal, in: The Physiological Basis of Memory, 2nd ed. ( J. A. Deutsch, ed.), Academic Press, New York, pp. 139–198.Google Scholar
  185. Jacobowiiz, D. M., and Creed, G. J., 1983, Cholinergic projection sites of the nucleus of tractus diagonalis, Brain Res. Bull, 10:365–371. Jacobs, R. W., Farivar, N., and Butcher, L. L., 1985, Plaque-like lesions in the basal forebrain in Alzheimer’s disease, Neurosci. Lett. 56: 347–351.Google Scholar
  186. Jacobsen, C. F., 1931, A study of cerebral function in learning. The frontal lobes, J. Comp. Neurol. 52: 271–340.Google Scholar
  187. Jarrard, L. E., Kant, G. J., Meyerhoff, J. L., and Levy, A., 1984, Behavioral and neurochemical effects of intraventricular AF64A administration in rats, Pharmacol. Biochem. Behav. 21: 273–280.PubMedGoogle Scholar
  188. Johnston, M. V., McKinney, M., and Coyle, J. T., 1981, Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat, Exp. Brain Res. 43: 159–172.PubMedGoogle Scholar
  189. Kamin, L. J., 1957, The retention of an incompletely learned avoidance response, J. Comp. Physiol. Psychol. 50: 457–468.PubMedGoogle Scholar
  190. Karczmar, A. G., 1975, Cholinergic influences on behavior. Cholinergic mechanisms, in: Cholinergic Mechanisms ( P. G. Waser, ed.), Raven Press, New York, pp. 501–529.Google Scholar
  191. Karpiak, S. E., Vilim, F., and Mahadik, S. P., 1984, Gangliosides accelerate rat neonatal learning and levels of acetylcholinesterases, Dev. Neurosci. 6: 127–135.Google Scholar
  192. Kasa, P., Farkas, Z., Szerdahflyi, P., Rakonczay, Z., Fisher, A., and Hanin, I., 1984, Effects of cholinotoxin (AF64A) in the central nervous system: Morphological and biochemical studies, in: Regulation of Transmitter Function: Basic and Clinical Aspects. Proc. 5th Meeting of European Society for Neurochemistry ( E. S. Vizi and K. Magyar, eds.), Elsevier, Amsterdam.Google Scholar
  193. Kasckow, J. W., Thomas, G. J., and Herndon, R. M., 1984, Performance factors in regard to impaired memory and tolerance induced by atropine sulphate, Physiol. Psychol. 12:111–15.Google Scholar
  194. Kelly, P. H., and Moore, K. E., 1978, Decrease of neocortical choline acetyltransferase after lesion of the globus pallidus in the rat, Exp. Neurol. 61: 479–484.PubMedGoogle Scholar
  195. Kievet,J., and Kuypers, H. G.J., 1975, Basal forebrain and hypothalamic connections to the frontal cortex and parietal cortex in the rhesus monkey, Science 187:660-662. KILBINGER, PL, 1984, Presynaptic muscarinic receptors modulating acetylcholine release, Trends Pharmacol. Sci. 5:103–105.Google Scholar
  196. Knowlton, B. J., Wenk, G. L., Olton, D. S., and Coyle, J. T., 1985, Basal forebrain lesions produce a dissociation of trial-dependent and trial independent memory performance, Brain Res. 345: 315–321.PubMedGoogle Scholar
  197. Kohler, C, Chan-Palay, V., and Wu, J-Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region of the rat brain, Anat. Embryol. 169: 41–44.PubMedGoogle Scholar
  198. Kojima, S., and Goldman-Rakic, P. S., 1982, Delay related activity of prefrontal neurons in rhesus monkeys performing delayed response, Brain Res. 248: 43–49.PubMedGoogle Scholar
  199. Kojima, S., Kojima, M., and Goldman-Rakic, P. S., 1982, Operant behavioural analysis of memory loss in monkeys with prefrontal lesions, Brain Res. 248: 51–59.PubMedGoogle Scholar
  200. Kokkinidis, L., and Anisman, H., 1976, Interaction between cholinergic and catecholaminergic agents in a spontaneous alternation task, Psychopharmacology 48: 261–270.PubMedGoogle Scholar
  201. Kolb, B., 1984, Functions of the frontal cortex of the rat: A comparative review, Brain Res. Rev. 8: 65–98.Google Scholar
  202. Kolb, B., Sutherland, R. J., and Whishaw, I. Q., 1983, A comparison of the contribution of the frontal and parietal association cortex to spatial localization in rats, Behav. Neurosci. 97: 13–27.PubMedGoogle Scholar
  203. Kozlowski, M. R., and Arbogast, R. E., 1986, Specific toxic effects of ethylcholine nitrogen mustard on cholinergic neurons of the nucleus basalis of meynert, Brain Res. 372: 45–54.PubMedGoogle Scholar
  204. Kromer, L. F., Bjorklund, A., and Stenevi, U., 1980, Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat, Brain Res. 210: 153–171.Google Scholar
  205. Kromer, L. F., Bjorklund, A., and Stenevi, U., 1981, Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implant as bridges, Brain Res. 210: 173–200.PubMedGoogle Scholar
  206. Ksir, C. J., 1974, Scopolamine effects on two trial delayed response performance in the rat, Psychopharmacologia (Berlin) 34: 127–134.Google Scholar
  207. Laties, V. G., 1972, The modification of drug effects on behaviour by external discriminative stimuli, J. Pharmacol, Exp. Ther. 183: 1–13.Google Scholar
  208. Lazareno S., Kendali, D. A., and Nahorski, S. R., 1985, Pirenzepine indicates heterogeneity of muscarinic receptors linked to inositol phospholipid metabolism, Neuropharmacology 24: 593–595.PubMedGoogle Scholar
  209. Leaton, R. N., 1968a, Effects of scopolamine on exploratory motivated behaviour, J. Comp. Physiol. Psychol. 66: 526–527.Google Scholar
  210. Leaton, R. N., 19686, Effects of scopolamine and eserine on position discrimination learning with an exploratory drive, Psychon. Sci. 12: 181–182.Google Scholar
  211. Leaton, R. N., and Kreindler, M., 1972, Effects of physostigmine and scopolamine on operant brightness discrimination in the rat, Physiol. Behav. 9: 121–123.PubMedGoogle Scholar
  212. Leaton, R. N., and Utell, M. J., 1970, Effects of scopolamine on spontaneous alternation following free and forced trials, Physiol. Behav. 5: 331–334.PubMedGoogle Scholar
  213. Lehmann, J., Struble, R. G., Antvona, P. G., Coyle, J. T., Cork, L. C, and Price, D. L., 1984, Regional heterogeneity of choline acetyltransferase in primate neocortex, Brain Res. 322: 361–364.PubMedGoogle Scholar
  214. Leopold, I. H., and Comroe, J. H., 1948, Effect of intramuscular administration of morphine, atropine, scopolamine and neostigmine on the human eye, Arch. Ophthalmol. 46: 285–290.Google Scholar
  215. Lerer, B., Warner, J., Friedman, E., Vincent, G., and Gamzu, E., 1985, (Cortical cholinergic impairment and behavioural deficits produced by Kainic acid lesions of rat mag-nocellular basal forebrain, Behav. Neurosci. 99: 661–677.Google Scholar
  216. Leventer, S., McKeag, D., Clancy, M., Witter, E., and Hanin I., 1985, Intracerebro-ventricular administration of ethylcholine mustard aziridinium ion (AF64A) reduces release of acetylcholine from rat hippocampal slices, Neuropharmacology 24: 453–459.PubMedGoogle Scholar
  217. Levy, A., Kluge, P. B., and Elsmore, T. E., 1983, Radial arm maze performance of mice: Acquisition and atropine effects, Behav. Neural Biol. 39: 229–240.PubMedGoogle Scholar
  218. Levy, A., Elsmore, T. F., and Hursh, S. R., 1984a, Central v peripheral anticholinergic effects on repeated acquisition of behavioral chains, Behav. Neural Biol, 40: 1–4.PubMedGoogle Scholar
  219. Levy, A., Kane, G. f., Meyerhoff, J. L., and Jarrard. L. E., 19846, Non-cholinergic neurotoxic effects of AF64A in the substantia nigra, Brain Res. 305: 169–172.PubMedGoogle Scholar
  220. Loconte, G., Bartolini, L., Casameni I, F., Marconini-Pepeu, I., and Pepeu, G., 1982a, Lesions of cholinergic forebrain nuclei: Changes in avoidance behavior and scopolamine actions, Pharmacol, Biochem. Behav. 17: 933–937.Google Scholar
  221. Loconte, G., Casamenit, F., Bigl, V., Milaneschi, E., and Pepeu, G., 1982b, Effect of magnocellular forebrain nuclei lesions on acetylcholine output from the cerebral cortex, electrocorticogram and behaviour, Arch, Ital. Biol. 120: 176–188.Google Scholar
  222. Longo, V. G., 1966, Behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol, Rev. 18: 965–996.Google Scholar
  223. Low, W. C, Lewis, P. R., Bench, S., Dunnett, S. B., Thomas, S. R., Iversen, S. D., Bjorklund, A., and Stenive, U., 1982, Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions, Nature 300: 260–262.PubMedGoogle Scholar
  224. Lynch, G., and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science 313: 479–481.Google Scholar
  225. Lynch, G., Matthews, D. A., Mosko, S., Parks, T., and Cotman, C, 1972, Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions, Brain Res. 42: 311–318.PubMedGoogle Scholar
  226. Macht, D. I., 1924, A pharmacological analysis of the cerebral effects of atropine, homatropin, scopolamin and related drugs, J. Pharmacol. Exp. Ther. 22: 35–48.Google Scholar
  227. Malmo, R. B., 1942, Interference factors in delayed-response in monkeys after removal of frontal lobes, J. Neurophysiol. 5: 295–308.Google Scholar
  228. Mann, D. M. A., Lincoln, J., Yates, P. O., Stamp, J. E., and Toper, S., 1980, Changes in the monoamine containing neurones of the human CNS in senile dementia, Br. J. Psychiatry 136: 533–541.PubMedGoogle Scholar
  229. Mann, D. M. A., Yates, P. O., and Hawkes, J., 1982, The noradrenergic system in Alzheimer and multi-infarct dementias, J Neurol. Neurosurg. Psychiatry 45: 113–119.PubMedGoogle Scholar
  230. Mantione, C. R., Fisher, A., and Hanin, I., 1981, The AF64A-treated mouse: Possible model for central cholinergic hypofunction, Science 213: 579580.Google Scholar
  231. Mantione, C. R., Zigmond, M. J., Fisher, A., and Hanin, I., 1983, Selective presynaotic cholinergic neurotoxicity following intrahippocampal AF64A injection in rats, J Neurochem. 41: 251–255.PubMedGoogle Scholar
  232. Mash, D. C, Flynn, D. D., and Potter, L. T., 1985, Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental denervation, Science 228: 115–117.Google Scholar
  233. Mason, S. T., and Fibiger, H. C, 1979, On the specificty of kainic acid. Science 204: 1339–1341.PubMedGoogle Scholar
  234. Matthies, H., Ott, T., and Kammerer, E., 1975, Cholinergic influences on learning, in:Cholinergic Mechanisms (P. G. Waser, ed.), Raven Press, New York.Google Scholar
  235. Mayo, W., Dubois, B., Ploska, A., Javoy-Agid, F., Agid, Y., Le Moal, M., and Simon, H., 1984, Cortical cholinergic projections from the basal forebrain of the rat, with special reference to the prefrontal cortex innervation, Neurosci. Lett. 47: 149–154.PubMedGoogle Scholar
  236. McCleary, R. A., 1966, Response-modulating functions of the limbic system: Initiation and suppression, in: Progress in Physiological Psychology (E. Stellar and J. M. Sprague, eds.), Vol. 1, Academic Press, New York, pp. 209–272.Google Scholar
  237. McDonough, J. H., 1982, Effects of anticholinergic drugs on DRL performance of Rhesus monkeys, Pharmacol. Biochem. Behav. 17: 85–90.PubMedGoogle Scholar
  238. McGaugh, J. L., 1966, Time dependent processes in memory storage, Science 153: 1351–1358.PubMedGoogle Scholar
  239. McKinney, M., Coyle, J. T., and Hedreen, J. C, 1983, Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system, J. Comp. Neurol. 217: 103–121.PubMedGoogle Scholar
  240. Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levy, A. I., 1983, Central cholinergic pathways in the rat: An overview based on alternative nomenclature (CH1-CH6), Neuroscience 10: 1185–1201.PubMedGoogle Scholar
  241. Mesulam, M. M., Mufson, E. J., Levey, A. I., and Wainer, B. H., 1984, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience 12: 669–686.PubMedGoogle Scholar
  242. Metys, J., Wagner, N., Metysova, J., and Herz, A., 1969, Studies on the central antinociceptive action of cholinomimetic agents, Int. J. Neuropharmacol. 8: 413–425.PubMedGoogle Scholar
  243. Meyers, B., 1965, Some effects of scopolamine on a passive avoidance response in rats, Psychopharmacologia (Berlin) 8: 111–119.Google Scholar
  244. Meyers, B., and Domino, E. F., 1964, The effect of cholinergic blocking drugs on spontaneous alternation in rats, Arch. Int. Pharmacodyn. 150: 525–529.PubMedGoogle Scholar
  245. Meyers, B., Roberts, K. H., Riciputi, R. H., and Domino, E. F., 1964, Some effects of muscarinic cholinergic blocking drugs on behavior and the electrocortigram, Psychopharmacologia 5: 289–300.PubMedGoogle Scholar
  246. Milar, K. S., and Dykstra, C. A., 1985, The effects of morphine and scopolamine on auditory discrimination in squirrel monkeys, Psychopharmacology 85: 148–150.PubMedGoogle Scholar
  247. Miller, L., Drew, W. G., and McCoy, D. F., 1971, Effects of post trial injections of scopolamine and eserine on acquisition of a simultaneous brightness discrimination task, Psychol. Rep. 29:1147–1152.Google Scholar
  248. Mishkin, M., 1964, Perseveration of central sets after frontal lesions in monkeys, in: The Frontal Granular Cortex and Behaviour ( J. M. Warren and K. Akert, eds.), McGraw-Hill, New York, pp. 219–241.Google Scholar
  249. Mishkin, M., 1982, A memory system in the monkey, Philos. Trans. Roy. Soc. (London) (Series B) 298: 85–95.Google Scholar
  250. Mishkin, M., and DeLacour, J., 1975, An analysis of short-term visual-memory in the monkey, J. Exp. Psychol.: Animal Behav. Processes 1: 316–324.Google Scholar
  251. Miyamoto, M., Shintani, M., Nagaoka, A., and Nagawa, Y., 1985, Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance levels, Brain Res. 328: 97–104.PubMedGoogle Scholar
  252. Mizumori, S. J. Y., Rosenzweig, M. R., and Kermisch, M. G., 1982, Failure of mice to demonstrate spatial memory in the radial maze, Behav. Neural Biol. 35: 33–45.PubMedGoogle Scholar
  253. Mollenauer, S., Plotnik, R., and Bean, N. J., 1976, Effects of scopolamine on smell discrimination in the rat, Physiol. Psychol. 4: 357–360.Google Scholar
  254. Morielli, A. D., Matera, E. M., Kovac, M. P., Schrum, R. G., McCormack, K. J., and Davis, W. J., 1986, Cholinergic suppression: A postsynaptic mechanism of long-term associative learning, Proc, Natl. Acad. Sci. USA 83: 4556–4560.Google Scholar
  255. Morris, R. G. M., 1981, Spatial localization does not require the presence of local cues, Learning Motivation 12: 239–249.Google Scholar
  256. Morris, R. G. M., 1983, An attempt to dissociate “spatial-mapping” and “working-memory” theories of hippocampal function, in: Neurobiology of the Hippocampus ( W. Seifert, ed.), Academic Press, New York, pp. 405–430.Google Scholar
  257. Morris, R. G. M., 1984, Developments of a water-maze procedure for studying spatial learning in the rat, J. Neurosci, Methods 11: 47–60.Google Scholar
  258. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O’Keefe, J., 1982, Place navigation impaired in rats with hippocampal lesions, Nature 297: 681–683.PubMedGoogle Scholar
  259. Morrison, J. H., Rogers, J., Schirr, S., Benoit, R., and Bloom, F. E.. 1985, Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients, Nature 314: 90–92.PubMedGoogle Scholar
  260. Morrow, A. L., Loy, R., and Creese, I., 1985, Alteration of nicotinic cholinergic agonist binding sites in hippocampus after fimbria transection, Brain Res. 334: 309–314.PubMedGoogle Scholar
  261. Murray, C. L., and Fibiger, H. C, 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine, Neuroscience 14: 1025–1032.PubMedGoogle Scholar
  262. Murray, C. L., and Fibiger, H. C, 1986, Pilocarpine and physostigmine attenuate spatial memory impairments produced by lesions of the nucleus basalis magnocellularis, Behav. Neurosci. 100: 23–32.PubMedGoogle Scholar
  263. Nadel, L., and MacDonald, L., 1980, Hippocampus: Cognitive map or working-memory? Behav. Neural Biol. 29: 405–409.PubMedGoogle Scholar
  264. Neill, D. B., and Grossman, S. P., 1970, Behavioral effects of lesions or cholinergic blockade of the dorsal and ventral caudate of rats, J. Comp. Physiol. Psychol, 71: 311–317.PubMedGoogle Scholar
  265. North, R. A., Slack, B. E., and Suprenant, A., 1985, Muscarinic M1 and M2 receptors mediate depolarization and presynaptic inhibition in guinea-pig enteric nervous system, J. Physiol. 368: 435–452.PubMedGoogle Scholar
  266. Oderfeld-Nowak, B., and Potempska, A., 1977, Analysis of the time course of changes in hippocampal acetylcholinesterase and choline acetyltransferase activities after various septal lesions in the rat: Return of enzymic activity after extensive medioventral lesions, Neuroscience 2: 641–648.PubMedGoogle Scholar
  267. Oderfeld-Nowak, B., Skup, M., Ulas,J., Jezierska, M., Gradkowska, M., and Zaremba, M., 1984, Effect of GM1 ganglioside treatment on postlesion response of cholinergic enzymes in rat hippocampus after various partial de-afferentations, J. Neurosci. Res. 12: 409–420.Google Scholar
  268. Okaichi, H., and Jarrard, L. E., 1982, Scopolamine impairs performance of a place and cue task in rats, Behav. Neural Biol, 35: 319–325.PubMedGoogle Scholar
  269. O’Keefe, J., and Dostrovsky, J., 1971, The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat, Brain Res. 34: 171–175.PubMedGoogle Scholar
  270. O’Keefe, J., and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Oxford University Press, Oxford.Google Scholar
  271. O’Keefe, J., Nadel, L., Keightly, S., and Kill, D., 1975, Fornix lesions selectively abolish place learning in the rat, Exp. Neurol. 48: 152–166.PubMedGoogle Scholar
  272. Oliverio, A., 1967, Contrasting effects of scopolamine on mice trained simultaneously with two different schedules of avoidance conditioning, Psychopharmacologia (Berlin) 11: 39–51.Google Scholar
  273. Oliverio, A., 1968, Effects of scopolamine on avoidance conditioning and habituation of mice, Psychopharmacologia (Berlin) 12: 214–226.Google Scholar
  274. Olton, D. S., and Pappas, B. C, 1980, Spatial memory and hippocampal system function, Neuropsychologia 17: 669–681.Google Scholar
  275. Olton, D. S., and Samuelson, R. J., 1976, Remembrance of places passed: Spatial memory in rats, J. Exp. Psychol: Animal Behav. Processes 2: 97–116.Google Scholar
  276. Olton, D. S., Walker, J. A., and Gage, F. M., 1978, Hippocampal connections and spatial discrimination, Brain Res. 139: 295–308.PubMedGoogle Scholar
  277. Olton, D. S., Becker, J. T., and Handelmann, G., 1979, Hippocampus, space and memory, Behav. Brain Sci. 2: 315–365.Google Scholar
  278. Overton, D. A., 1966, State dependent learning produced by depressant and atropine-like drugs, Psychopharmacologia 10: 6–31.PubMedGoogle Scholar
  279. Overton, D. A., 1977, Discriminable effects of antimuscarinics: Dose response and substitution test studies, Pharmacol. Biochem. Behav. 6: 659–666.PubMedGoogle Scholar
  280. Pazzagli, A., and Pepeu, G., 1964, Amnesic properties of scopolamine and brain acetylcholine in the rat, Int. J. Neuropharmacol. 4: 291–299.Google Scholar
  281. Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C, Powell, T. P. S., Eckenstein, F., Esiri, M. M., and Wilcock, G. K., 1983, Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase, Brain Res. 289: 375–379.PubMedGoogle Scholar
  282. Pedata, F., LoConte, G., Sorbi, S., Maronini-Pepeu, I., and Pepeu, G., 1982, Changes in high affinity choline uptake in rat cortex following lesion of the magnocellular forebrain nuclei, Brain Res. 233: 359–367.PubMedGoogle Scholar
  283. Pedata, F., Giovanella, L., and Pepeu, G., 1984, GMI ganglioside facilitates the recovery of high affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis, J. Neurosci. Res. 12: 421–427.PubMedGoogle Scholar
  284. Penetar, D. M., 1985, The effects of atropine, benactyzine and physostigmine on a repeated acquisition baseline in monkeys, Psychopharmacology 87: 69–76.PubMedGoogle Scholar
  285. Penetar, D. M., and McDonough, J. H., 1983, Effects of cholinergic drugs on delayed match-to-sample performance of Rhesus monkeys, Pharmacol. Biochem. Behav. 19: 963–967.PubMedGoogle Scholar
  286. Pepeu, G., 1973, The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms, Prog. Neurobiol. 2: 257–288.Google Scholar
  287. Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L., and Wyatt, R. J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204: 643–647.PubMedGoogle Scholar
  288. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergman, K., Gibson, P. H., and Perry, R. H., 1978, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br. Med. J. 2: 1457–1459.PubMedGoogle Scholar
  289. Perry, R. H., Candy, J. M., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E., 1982, Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease, Neurosci. Lett. 33: 311–315.PubMedGoogle Scholar
  290. Pohl, W., 1973, Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys, J. Comp. Physiol. Psychol. 82: 227–289.PubMedGoogle Scholar
  291. Polak, R. L., 1965, Effect of hyoscine on the output of acetylcholine into perfused cerebral ventricles of cats, J. Physiol. 181: 317–323.PubMedGoogle Scholar
  292. Polak, R. L., 1971, Stimulating action of atropine on the release of acetylcholine by rat cerebral cortex in vitro, Br. J. Pharmacol. 41: 600–606.PubMedGoogle Scholar
  293. Pontecorvo, M. J., and Evans, H. C, 1985, Effects of aniracetam on delayed-matching-sample performance of monkeys and pigeons, Pharmacol. Biochem. Behav. 22: 745–752.PubMedGoogle Scholar
  294. Pradhan, S. N., and Roth, T., 1968, Comparative behavioural effects of several anticholinergic agents in rats, Psychopharmacologia (Berlin) 12: 358–366.Google Scholar
  295. Prado-Alcala, R. A., and Cobos-Zapiain, G. G., 1977, Learning deficits induced by cholinergic blockade of the caudate nucleus as a function of experience, Brain Res. 138: 190–196.PubMedGoogle Scholar
  296. Prado-Alcala, R. A., and Cobos-Zapiain, G. G., 1979, Improvement of learned behaviour through cholinergic stimulation of the caudate nucleus, Neurosci. Lett, 14: 253–258.PubMedGoogle Scholar
  297. Prado-Alcala, R. A., Grinberg-Zylberbaun, J., Alvarez-Leefmans, J., Gomez, A., Singer, S., and Brust-Carmona, H., 1972, A possible caudate-cholinergic mechanism in two instrumental conditioned responses, Psychopharmacologia (Berlin) 25: 339–346.Google Scholar
  298. Prado-Alcala, R. A., Bermudez-Rattoni, F., Velazquez-Martinez, D. N., and Bacha, G. M., 1978, Cholinergic blockade of the caudate nucleus and spatial alternation performance in rats: Overtraining induced protection against behavioral deficits, Life Sci. 23: 889–896.PubMedGoogle Scholar
  299. Prado-Alcala, R. A., Cruz-Morales, S. E., and Lopez-Miro, F. A., 1980a, Differential effects of cholinergic blockade of anterior and posterior caudate nucleus on avoidance behaviors, Neurosci. Lett. 18: 339–345.Google Scholar
  300. Prado-Alcala, R. A., Kaufmann, P., and Moscona, R., 19806, Scopolamine and KC1 injections into the caudate nucleus. Overtraining-induced protection against deficits of learning, Pharmacol, Biochem. Behav. 12: 249–253.Google Scholar
  301. Prado-Alcala, R. A., Signoret, L., and Figueroa, M., 1981, Time dependent retention deficits induced by post-training injections of atropine into the caudate nucleus, Pharmacol. Biochem. Behav. 15: 633–636.PubMedGoogle Scholar
  302. Prado-Alcala, R. A., Cepeda, G., Verduzco, L., Jimenez, A., and Vargas-Ortega, E., 1984a, Effects of cholinergic stimulation of the caudate nucleus on active avoidance, Neurosci. Lett. 51: 31–36.Google Scholar
  303. Prado-Alcala, R. A., Signoret-Edward, L., Figueroa, M., Giordano, M., and Barrientos, M. A., 1984b, Post trial injection of atropine into the caudate nucleus interferes with long term but not short term retention of passive avoidance, Behav. Neural Biol. 42: 81–84.Google Scholar
  304. Preston, K. L., Wagner, G. C, Seiden, L. S., and Schuster, C. R., 1984, Effects of metamphetamine on atropine induced conditioned gustatory avoidance, Pharmacol, Biochem. Behav. 20: 601–607.Google Scholar
  305. Raiteri, M., Leardi, R., and Mario, M., 1984, Heterogeneity of presynaptic muscarinic regulating neurotransmitter release in the rat brain, J. Pharmacol. Exp. Ther. 228: 209–214.PubMedGoogle Scholar
  306. Rawlins, J. N. P., and Olton, D. S., 1982, The septo-hippocampal system and cognitive mapping, Behav. Brain Res. 5: 331–358.PubMedGoogle Scholar
  307. Rech, R. H., 1968, Effects of cholinergic drugs on poor performance of rats in a shuttle box, Psychopharmacologia (Berlin) 12: 371–383.Google Scholar
  308. Renfro, C. T., Freedman, P. E., and Rosen, A. J., 1972, The concurrent effects of scopolamine on spontaneous motor activity and the acquisition of an active avoidance response, Neuropharmacology 11: 337–346.Google Scholar
  309. Revzin, A. M., 1976, Effects of organophosphate pesticides and other drugs on subcortical mechanisms of visual integration, Aviation Space Environ. Med. 47: 627–629.Google Scholar
  310. Ridley, R. M., Barrate, N. G., and Baker, H. F., 1984a, Cholinergic learning deficits in the marmoset produced by scopolamine and ICV hemicholinium, Psychopharmacology 83:340–345PubMedGoogle Scholar
  311. Ridley, R. M., Bowes, P. M., Baker, H. F., and Crow, T. J., 1984b, An involvement of acetylcholine in object discrimination learning and memory in the marmoset, Neuropsychologia 22: 253–263.PubMedGoogle Scholar
  312. Ridley, R. M., Baker, H. F., Drewett, B., and Johnson, J. A., 1985, Effects of ibotenic acid lesions of the basal forebrain on serial reversal learning in marmosets, Psychopharmacology 86: 438–443.PubMedGoogle Scholar
  313. Ridley, R. M., Murray, T. K., Johnson, J. A., and Baker, H. F., 1986, Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: Modification by cholinergic drugs, Brain Res. 376: 108–116.PubMedGoogle Scholar
  314. Roberts, G. W., Crow, T. J., and Polak, J. M., 1985, Location of neuronal tangles in somatostatin neurones in Alzheimer’s disease, Nature 314: 92–94.PubMedGoogle Scholar
  315. Robustelli, F., Glick, S. D., Goldfarb, T. L., Geller, A., and Jarvik, M. E., 1969, A further analysis of scopolamine impairment of delayed matching with monkeys, Commun. Behav. Biol. 3: 101–109.Google Scholar
  316. Rosecrans, J. A., Dren, A. T., and Domino, E. F., 1968, Effects of physostigmine on rat brain acetylcholine acetylcholinesterase and conditioned pole jumping, Int. J. Neuropharmacol. 7: 127–134.PubMedGoogle Scholar
  317. Rosic, N., and Bignami, G., 1970, Depression of two way avoidance learning and enhancement of passive avoidance learning by small doses of physostigmine, Neuropharmacology 9: 311–316.PubMedGoogle Scholar
  318. Russell, R. W., 1969, Behavioral aspects of cholinergic transmission, Fed. Proc. 28: 121–131.PubMedGoogle Scholar
  319. Russell, R. W., and Macri, J., 1977, Some behavioral effects of suppressing choline transport by cerebroventricular injection of hemicholinium-3, Pharmacol. Biochem. Behav. 8: 399–403.Google Scholar
  320. Rye, D. B., Wainer, B. H., Mesulam, M. M., Mufson, E. J., and Saper, C. B., 1984, Cortical projections arising from the basal forebrain: A study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neuroscience 13: 627–643.PubMedGoogle Scholar
  321. Sahgal, A., and Wright, C, 1984, Choice, as opposed to latency, measures in avoidance suggest that vasopressin and oxytocin do not affect memory in rats, Neurosci. Lett. 48: 299–304.PubMedGoogle Scholar
  322. Salamone, J. D., Beart, P. J., Alpert, J. E., and Iversen, S. D., 1984, Impairment in T maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats, Behav. Brain Res. 13: 63–70.PubMedGoogle Scholar
  323. Sandberg, K., Hanin, L, Fisher, A., and Coyle, J. T., 1984a, Selective cholinergic neurotoxin: AF64A’s effects in rat striatum, Brain Res. 293: 49–55.Google Scholar
  324. Sandberg, K., Sandberg, P. R., and Coyle, J. T., 1984b, Effects of intrastriatal injections of the cholinergic neurotoxin AF64A on spontaneous nocturnal locomotor behavior in the rat, Brain Res. 299: 339–343.Google Scholar
  325. Sandberg, K., Schnaar, R. L., McKinney, M., Hanin, I., Fisher, A., and Coyle, J. T., 1985, AF64A: An active site directed irreversible inhibitor of choline acetyltransferase, J. Neurochem. 44: 439–445.PubMedGoogle Scholar
  326. Satoh, K., Armstrong, D. M., and Fibiger, H. C, 1983, A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry, Brain Res. Bull. 11: 693–720.PubMedGoogle Scholar
  327. Schallert, T., Whishaw, I. Q., Ramirez, V. D., and Teitelbaum, P., 1978, Compulsive, abnormal walking caused by anticholinergics in akinetic 6-hydroxydopamine-treated rats, Science 199: 1461–1463.PubMedGoogle Scholar
  328. Schallert, T., De Ryck, M., and Teitelbaum, P., 1980, Atropine stereotypy as a behavioural trap: A movement subsystem and electroencephalographic analysis, J. Comp. Physiol. Psychol. 94: 1–24.PubMedGoogle Scholar
  329. Segal, M., 1978, The acetylcholine receptor in the rat hippocampus: nicotinic, muscarinic or both, Neuropharmacology 17: 619–623.PubMedGoogle Scholar
  330. Serby, M., Richardson, S. B., Twente, S., Siekierski, J., Corwin, J., and Rotrosen, J., 1984, CSF somatostatin in Alzheimer’s disease, Neurobiol. Aging 5: 187–189.PubMedGoogle Scholar
  331. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90: 497–520.PubMedGoogle Scholar
  332. Singh, H. K., Ott, T., and Matthies, H., 1974, Effect of intrahippocampal injection of atropine on different phases of a learning experiment, Psychopharmacologia (Berlin) 38: 247–258.Google Scholar
  333. Smith, A. A., and Calhoun, W. H., 1972, Scopolamine: Effects on conditioned suppression, Neuropharmacology 11: 347–350.PubMedGoogle Scholar
  334. Spencer, D. G., Horvath, E., and Traber, J., 1986, Direct autoradiographic determination of M1 and M2 muscarinic acetylcholine receptor distribution in the rat brain: Relation to cholinergic nuclei and projections, Brain Res. 380: 59–68.PubMedGoogle Scholar
  335. Spencer, D. G., Pontecorvo, M. J., and Heise, G. A., 1985, Central cholinergic involvement in working memory: Effects of scopolamine on continuous nonmatching and discrimination performance in the rat, Behav. Neurosci. 99: 1049–1065.PubMedGoogle Scholar
  336. Squire, L. R., 1969, Effects of pretrial and post trial administration of cholinergic and anticholinergic drugs on spontaneous alternation, J. Comp. Physiol. Psychol. 69: 69–75.PubMedGoogle Scholar
  337. Squire, L. R., and Zola-Morgan, S., 1983, The neurology of memory: The case for correspondence between the findings for man and non-human primate, in: The Physiological Basis of Memory ( J. A. Deutsch, ed.), Academic Press, New York.Google Scholar
  338. Squire, L. R., Click, S. D., and Goldfarb, J., 1971, Relearning at different times after training as affected by centrally and peripherally acting cholinergic drugs in the mouse, J. Comp. Physiol. Psychol. 74: 41–45.PubMedGoogle Scholar
  339. Stanes, M. D., Brown, C. P., and Singer, G., 1976, Effect of physostigmine on Y maze discrimination retention in the rat, Psychopharmacologia (Berlin) 46: 269–276.Google Scholar
  340. Stevens, R., 1981, Scopolamine impairs spatial maze performance in rats, Physiol, Behav. 27: 385–386.Google Scholar
  341. Stewart, D. J., MacFabe, D. F., and Vanderwolf, C. H., 1984, Cholinergic activation of the electrocorticogram: Role of the substantia innominata and effects of atropine and quinuclidinyl benzilate, Brain Res. 322: 219–232.PubMedGoogle Scholar
  342. Sermion, L. O., and Petrinovitch, L., 1963, Post trial injections of an anticholinesterase drug and maze learning in two strains of rats, Psychopharmacologia 5: 47–54.Google Scholar
  343. Suits, E., and Isaacson, R. L., 1968, The effects of scopolamine hydrobromide on one way and two way avoidance learning in rats, Int. J. Neuropharmacol. 2: 441–446.Google Scholar
  344. Sutherland, R. J., Whishaw, I. Q., and Regehr, J.C., 1982, Cholinergic receptor blockade impairs spatial localization by use of distal cues in the rat, J. Comp. Physiol. Psychol. 96: 563–573.PubMedGoogle Scholar
  345. Swonger, A. K., and Rech, R. H., 1972, Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze, J. Comp. Physiol. Psychol. 81: 509–522.PubMedGoogle Scholar
  346. Thompson, R., Gibbs, R. B., Ristic, G. A., Cotman, C. W., and Yu, J., 1986, Lack of correlation between cortical levels of choline acetyltransferase and learning scores in rats with globus pallidus lesions, Brain Res. 367: 402–404.PubMedGoogle Scholar
  347. Thompson, R. W., and Nielsen, C, 1972, The effect of scopolamine on the Kamin effect: A test of the parasympathetic overreaction hypothesis, Psychonom, Sei. 28: 140-141.Google Scholar
  348. Todd, J. W., and Kesner, R. P., 1978, Effects of post-training injection of cholinergic agonists and antagonists into the amygdala on retention of passive avoidance training in rats, J Comp. Physiol. Psychol. 92: 958–968.Google Scholar
  349. Tomlinson, B. E., Irving, D.. and Blessed, G., 1981, Cell loss in the locus coeruleus in senile dementia of Alzheimer type, J. Neurol. Sci. 49: 419 - 428.PubMedGoogle Scholar
  350. Van Der Poel, A. M., 1974, The effect of some cholinolytic drugs on a number of behavioural parameters measured in the T-maze alternation test: Dose response relationships, Psychopharmacologia (Berlin) 37: 45–58.Google Scholar
  351. Vanderwolf, C. H., 1975, Neocortical and hippocampal activation in relation to behaviour: effects of atropine, eserine, phenothiazines and amphetamine, J. Comp. Physiol. Psychol. 88: 300–323.PubMedGoogle Scholar
  352. Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulocortical activity and behaviour: A critique of the arousal theory and a new synthesis, Behav. Brain Sci. 4: 459–514.Google Scholar
  353. Vickroy, T. W., Watson, M., Yamamura, H. I., and Roeske, W. R., 1984, Agonist binding to multiple muscarinic receptors, Fed. Proc. 43: 2785–2790.PubMedGoogle Scholar
  354. Wagman, W. D., and Maxey, G. C., 1969, The effects of scopolamine hydrobromide and methyl scopolamine hydrobromide upon the discrimination of interoceptive and exteroceptive stimuli, Psychopharmacologia 15: 280–288.PubMedGoogle Scholar
  355. Wainer, B. H., Levey, A. I., Rye, D. B., Mesulam, M. M., and Mufson, E. J., 1985, Cholinergic and non cholinergic septohippocampal pathways, Neurosci. Lett. 54: 45–52.PubMedGoogle Scholar
  356. Walsh, T. J., Tilson, H. A., De Haven, D. L., Mailman, R. B., Fisher, A., and Hanin, I., 1984, AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex and produces long term passive avoidance and radial-arm maze deficits in the rat, Brain Res. 321:91–102.PubMedGoogle Scholar
  357. Wamsley, J. K., Gehlert, D. R., Roeske, W. R., and Yamamura, H. I, 1984, Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after distinct labelling with [3H]-QNB and [3H] pirenzepine, Life Sci. 34: 1395–1402.PubMedGoogle Scholar
  358. Warburton, D. M., and Brown, K., 1971, Attenuation of stimulus sensitivity induced by scopolamine, Nature 230: 126–127.PubMedGoogle Scholar
  359. Warburton, D. M., and Brown, K., 1972, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia (Berlin) 27: 275–284.Google Scholar
  360. Warburton, D. M., and Wesnes, K., 1984, Drugs as research tools in psychology: Cholinergic drugs and information processing, Neuropsychobiology 11: 121–132.PubMedGoogle Scholar
  361. Watson, M., Roeske, W. R., and Yamamura, H. I., 1982, [3H] pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex, Life Sci. 31: 2019–2033.Google Scholar
  362. Watts, J., Stevens, R., and Robinson, C, 1981, Effects of scopolamine on radial maze performance in rats, Physiol. Behav. 26: 845–851.PubMedGoogle Scholar
  363. Weiner, N. L, and Messer, J., 1973, Scopolamine induced impairment of long term retention in rats, Behav. Neural Biol. 9: 227–234.Google Scholar
  364. Weiss, B., and Heller, A., 1969, Methodological problems in evaluating the role of cholinergic mechanisms in behavior, Fed. Proc. 28: 135–146.PubMedGoogle Scholar
  365. Wenk, G. L., and Olton, D. S., 1984, Recovery of neocortical choline acetyltransferase activity following ibotenic acid injection into the nucleus basalis of Meynert in rats, Brain Res. 293: 184–186.PubMedGoogle Scholar
  366. Wenk, G. L., Cribbs, B., and McCall, L., 1984a, Nucleus basalis magnocellularis: Optimal coordinates for selective reduction of choline acetyltransferase in frontal neocortex by ibotenic acid injections, Exp. Brain Res. 56: 335–340.Google Scholar
  367. Wenk, G., Hepler, D., and Olton, D., 1984b, Behavior alters the uptake of [3H] choline into acetylcholinergic neurons of the nucleus basalis magnocellularis and medial septal area, Behav. Brain Res. 13: 129–138.Google Scholar
  368. Wenk, H., Bigl, V., and Meyer, U., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats, Brain Res. Rev. 2: 295–316.Google Scholar
  369. Wesnes, K., and Warburton, D. M., 1983, Effects of scopolamine on stimulus sensitivity and response bias in a visual vigilance task, Neuropsychobiology 9: 154–157.PubMedGoogle Scholar
  370. Wesnes, K., and Warburton, D. M., 1984, Effects of scopolamine and nicotine on human rapid information processing performance, Psychopharmacology 82: 147–150.PubMedGoogle Scholar
  371. Wesnes, K., Warburton, D. M., and Matz, B., 1983, Effects of nicotine on stimulus sensitivity and response bias in a visual vigilance task, Neuropsychobiology 9: 41–44.PubMedGoogle Scholar
  372. Whishaw, I. Q., 1985a, Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool, Behav. Neurosci. 99: 979–1005.Google Scholar
  373. Whishaw, I. Q., 1985b, Formation of a place learning-set by the rat: A new paradigm, Physiol. Behav. 35: 139–143.Google Scholar
  374. Whishaw, I. Q., Robinson, T. E., and Schallert, T., 1976, Intraventricular anticholinergics do not block cholinergic hippocampal RSA or neocortical desynchronization in rabbit or rat, Pharmacol. Biochem. Behav. 5: 275–283.PubMedGoogle Scholar
  375. Whishaw, I. Q., O’connor, W. T., and Dunneit, S. B., 1985, Disruption of central cholinergic systems in the rat by basal forebrain lesions or atropine: Effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation, Behav. Brain Res. 17: 103–115.PubMedGoogle Scholar
  376. Whitehouse, J. M., 1964, Effects of atropine on discrimination learning in the rat,/. Comp. Physiol. Psychol. 57: 13–15.Google Scholar
  377. Whitehouse, J. M., 1966, The effects of physostigmine on discrimination learning, Psychopharmacologia (Berlin) 9: 183–188.Google Scholar
  378. Whitehouse, J. M., 1967, Cholinergic mechanisms in discrimination learning as a function of stimuli,/. Comp. Physiol. Psychol. 63: 448–451.Google Scholar
  379. Whitehouse, J. M., Lloyd, A. J., and Fifer, S. A., 1964, Comparative effects of atropine and methyl-atropine on maze acquistion and eating,/. Comp. Physiol, Psychol. 58: 475–476.Google Scholar
  380. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and de Long, M. R., 1981, Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol, 10: 122–126.Google Scholar
  381. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle,d. T., and de Long, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.Google Scholar
  382. Wiener, N., and Deutsch, J. A., 1968, Temporal aspects of anticholinergic and anti¬cholinesterase induced amnesia for an appetitive habit, J. Comp. Physiol. Psychol. 66: 613–617.PubMedGoogle Scholar
  383. Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C. T., 1983, The nucleus basalis in Alzheimer’s disease: Cell counts and cortical biochemistry, Neuropathol. Appl. Neurobiol. 9:175–179.Google Scholar
  384. Wilson, L. M., and Riccio, D. C, 1976, Scopolamine’s effect on passive avoidance behavior in immature rats, Dev. Psychobiol. 9: 245–254.PubMedGoogle Scholar
  385. Wirsching, B. A., Beninger, R. J., Jhamandas, K., Boegman, R. J., and El-Defrawy, S. R., 1984, Differential effects of scopolamine on working memory and reference memory of rats in the radial maze, Pharmacol. Biochem. Behav. 20: 659–662.PubMedGoogle Scholar
  386. Witter, A., Slangen, J. L., and Terpstra, G. K., 1973, Distribution of pH]-Methyl atro¬pine in rat brain, Neuropharmacology 12: 835 - 841.PubMedGoogle Scholar
  387. Wojcik, M., Ulas, J., and Oldeneeld-Nowak, B., 1982, The stimulating effect of gang-lioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesion, Neuroscience 7: 495–499.PubMedGoogle Scholar
  388. Woole, N.J., and Butcher, L. L., 1985, Cholinergic systems in the rat brain: II Projections to the interpeduncular nucleus, Brain Res. Bull. 14: 63–83.Google Scholar
  389. Woolf, N.J., Eckenstein, F., and Butcher, L. L., 1983, Cholinergic projections from the basal forebrain to the frontal cortex: A combined fluorescent tracer and immunohisto-chemical analysis in the rat, Neurosci. Lett. 40: 93–98.PubMedGoogle Scholar
  390. Woolf, N. J., Eckenstein, F., and Butcher, L. L., 1984, Cholinergic systems in the rat brain. I. Projections to the limbic telencephalon, Brain Res. Bull. 13: 751–784.PubMedGoogle Scholar
  391. Worsham, E., and Hamilton, L. W., 1973, Acquistion and retention of avoidance behaviors following septal lesions and scopolamine injections in rats, Physiol. Psychol, 1: 219–226.Google Scholar
  392. Yates, C. M., Simpson, J., Gordon, A., Maloney, A. F.]., Allison, Y., Ritchie, I. M., and Urquhari, A., 1983, Catecholamines and cholinergic enzymes in presenile and senile Alzheimer type dementia and Down’s syndrome, Brain Res. 280: 1 19–126.Google Scholar
  393. Zheng, S., Berman, H. A., and Geyer, M. A., 1983, Behaviour during hippocampal microin-fusions: Acetylcholinesterase induced locomotor activation, Behav. Brain Res. 9: 295–304.PubMedGoogle Scholar
  394. Zoladek, L., and Roberts, W. A., 1978, The sensory basis of spatial memory in the rat, Animal Learning Behav. 6: 77–81.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. J. Hagan
    • 1
  • R. G. M. Morris
    • 2
  1. 1.CNS Pharmacology LaboratoryOrganon BVOssThe Netherlands
  2. 2.Laboratory for Cognitive Neuroscience, Department of PharmacologyUniversity of Edinburgh Medical SchoolEdinburghScotland

Personalised recommendations