Skip to main content

Chemical Neuroanatomy of Alzheimer’s Disease

  • Chapter
Book cover Handbook of Psychopharmacology

Abstract

Alzheimer’s disease (AD) is a dementing illness, primarily of older adult life, that is characterized by the presence in the brain of neuritic (senile) plaques (NP) and neurofibrillary tangles (NFT). The NFT, which can be visualized by silver staining or by the fluorescent thioflavin-S stain, is an accumulation of fibrillary material that originates within neuronal cell bodies. As the neurofibrillary material accumulates (see Fig. 1), it gradually displaces normal intracellular organelles until the neuron dies, leaving behind an insoluble tangle (Alzheimer, 1907; Adams and Lee, 1982; Saper et al., 1985). On electron microscopy, the NFT consists of paired helical filaments (Terry and Katzman, 1983). The NP, by contrast, consists of a spherical accumulation of densely matted degenerating neurites, primarily axons. The NP often has an amyloid core, which may be associated with a small blood vessel (Wisniewski and Terry, 1973; Hardy et al., 1987). On electron microscopy, the degenerating axons in the NP are also found to contain paired helical filaments (Price, 1986). Thus, NFT and NP represent, respectively, the cell bodies and terminal axons of neurons that have been involved by the degenerative process in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. D., and Lee, J. C, 1982, Neurons and neuronal reactions in disease states, in: Histology and Histopathology of the Nervous System ( W. Haymaker and R. D. Adams, eds.), Charles C. Thomas, Springfield, IL, pp. 174–275.

    Google Scholar 

  • Alzheimer, A., 1907, Uber eine eigenartige erkrankung der hirnrinde, Allge. Z. Psychiatr. 64: 146–148.

    Google Scholar 

  • Amaducci, L. A., Rocca, W. A., and Schoenberg, B. S., 1986, Origin of the distinction between Alzheimer’s disease and senile dementia: How history can clarify nosology, Neurology 36: 1497–1499.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., and Price, J. L., 1984, Amygdalo-cortical projections in the monkey, J. Comp. Neurol. 230: 465–496.

    PubMed  CAS  Google Scholar 

  • Arai, H., Kosaka, K., and Iizuka, R., 1984, Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia, J. Neurochem. 43: 388–393.

    PubMed  CAS  Google Scholar 

  • Arai, H., Moroji, T., Kosaka, K., and Iizuka, R., 1986, Extrahypophyseal distribution of alpha-melanocyte stimulating hormone (alpha-MSH)-like immunoreactivity in post-mortem brains from normal subjects and Alzheimer-type dementia patients, Brain Res. 377: 305–310.

    PubMed  CAS  Google Scholar 

  • Arendt, T., Bigl, V., Arendt, A., and Tennstedt, A., 1983, Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff s disease, Acta Neuropathol. 61: 101–108.

    PubMed  CAS  Google Scholar 

  • Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1984, Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease, Neurosci. Lett. 48: 81–85.

    PubMed  CAS  Google Scholar 

  • Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1985, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neuroscience 14: 1–14.

    PubMed  CAS  Google Scholar 

  • Armstrong, D. M., Saper, C. B., Levey, A. L, Wainer, B. H., and Terry, R. D., 1983, Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemi-cal localization of choline acetyltransferase, J. Comp. Neurol. 216: 53–68.

    PubMed  CAS  Google Scholar 

  • Armstrong, D. M., Leroy, S., Shields, D., and Terry, R. D., 1985, Somatostatin-like immunoreactivity within neuritic plaques, Brain Res. 338: 71–79.

    PubMed  CAS  Google Scholar 

  • Ball, M. J., 1978, Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging demented patients. A quantitative study, Acta Neuropathol. 42: 73–80.

    PubMed  CAS  Google Scholar 

  • Ball, M. J., and Nuttall, K., 1981, Topography of neurofibrillary tangles and gran-ulovacuoles in hippocampi of patients with Down’s syndrome: Quantitative comparison with normal ageing and Alzheimer’s disease, Neuropathol. Appl. Neurobiol. 7: 13–20.

    PubMed  CAS  Google Scholar 

  • Bartus, R. T., Dean, R. L. III, Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408–417.

    PubMed  CAS  Google Scholar 

  • Beal, M. F., Mazurek, M. F., Chattha, G. K., Svendsen, C. N., Bird, E. D., and Martin, J. B., 1986a, Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease, Ann. Neurol. 20: 282–288.

    PubMed  CAS  Google Scholar 

  • Beal, M. F., Mazurek, M. F., Svendsen, C. N., Bird, E. D., and Martin, J. B., 19866, Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease, Ann. Neurol. 20: 489–495.

    Google Scholar 

  • Bigl, V., Woolf, N. J., and Butcher, L. L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis, Brain Res. Bull. 8: 727–749.

    PubMed  CAS  Google Scholar 

  • Bissette, G., Reynolds, G. P., Kilts, C. D., Widerlov, E., and Nemeroff, C. B., 1985, Corticotropin-releasing factor-like immunoreactivity in senile dementia of the Alzheimer type, JAMA 254: 3067–3069.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., Smith, C. B., White, P., and Davison, A. N., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain 99: 459–496.

    PubMed  CAS  Google Scholar 

  • Brockhaus, H., 1938, Zur normalen und pathologischen anatomie des mandelkerngebeites, J. Psychol. Neurol. 49: 1–136.

    Google Scholar 

  • Brun, A., 1983, An overview of light and electron microscopic changes, in: Alzheimer’s Disease. The Standard Reference ( B. Reisberg, ed.), Free Press, New York, pp. 37–47.

    Google Scholar 

  • Brun, A., and Englund, E., 1981, Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading, Histopathology 5: 549–564.

    PubMed  CAS  Google Scholar 

  • Brun, A., and Gustafson, L., 1976, Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study, Arch. Psychiatr. Nervenkr. 223: 15–33.

    PubMed  CAS  Google Scholar 

  • Burger, P. C., 1983, The limbic system in Alzheimer’s disease, in: Biological Aspects of Alzheimer’s Disease, Cold Spring Laboratory, Cold Spring Harbor, NY, pp. 37–44.

    Google Scholar 

  • Caltagirone, C, Albanese, A., Gainotti, G., and Masullo, C, 1983, Acute administration of individual opitmal dose of physostigmine fails to improve mnesic performances in Alzheimer’s presenile dementia, Int. J. Neurosci. 18: 143–148.

    PubMed  CAS  Google Scholar 

  • Candy, J. M., Perry, R. H., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E., 1983, Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases, J. Neurol. Sei. 59: 277–289.

    CAS  Google Scholar 

  • Candy, J. M., Gascoigne, A. D., Biggins, J. A., Smith, A. I., Perry, R. H., Perry, E. K., Mcdermott, J. R., and Edwardson, J. A., 1985, Somatostatin immunoreactivity in cortical and some subcortical regions in Alzheimer’s disease, J. Neurol. Sei. 71: 315–323.

    CAS  Google Scholar 

  • Chan-Palay, V., Allen, Y. S., Lang, W., Haesler, U., and Polak, J. M., 1985, II. Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer’s type dementia, J. Comp. Neurol. 238: 390–400.

    PubMed  CAS  Google Scholar 

  • Cowan, W. M., 1970, Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system, in: Contemporary Research Methods in Neuroanatomy ( W. J. H. Nauta and S. O. E. Ebbesson, eds.), Springer-Verlag, Berlin, pp. 217–251.

    Google Scholar 

  • Crawley, J. N., Olschowka, J. A., Diz, D. I., and Jacobowitz, D. M., 1985, Behavioral investigation of the coexistence of substance P, corticotropin releasing factor, and acety-lcholinesterase in lateral dorsal tegmental neurons projecting to the medial frontal cortex of the rat, Peptides 6: 891–901.

    PubMed  CAS  Google Scholar 

  • Curcio, C. A., and Kemper, T., 1984, Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density, J. Neuropathol. Exp. Neurol. 43: 359–368.

    PubMed  CAS  Google Scholar 

  • Davies, P., and Maloney, A. J. F., 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403.

    PubMed  CAS  Google Scholar 

  • Davies, P., Katzman, R., and Terry, R. D., 1980, Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia, Nature 288: 279–280.

    PubMed  CAS  Google Scholar 

  • Davis, K. L., and Mohs, R. C, 1982, Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine, Am. J. Psychiatry 139: 1421–1424.

    PubMed  CAS  Google Scholar 

  • De Souza, E. B., Whitehouse, P. J., Kuhar, M. J., Price, D. L., and Vale, W. W., 1986, Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease, Nature b:593–595.

    Google Scholar 

  • Drachman, D. A., Glosser, G., Fleming, P., and Longenecker, G., 1982, Memory decline in the aged: Treatment with lecithin and physostigmine, Neurology 32: 944–950.

    PubMed  CAS  Google Scholar 

  • Dunnett, S. B., Toniolo, G., Fine, A., Ryan, C. N., Bjorklund, A., and Iversen, S. D., 1985, Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis-II. Sensorimotor and learning impairments, Neuroscience 16: 787–797.

    PubMed  CAS  Google Scholar 

  • Duyckaerts, C, Hauw, J-J., Basienaire, F., Piette, F., Poulain, C, Rainsard, V., Javoy-Agid, F., and Berthaux, P., 1986, Laminar distribution of neocortical plaques in senile dementia of the Alzheimer type, Acta Neuropathol. 70: 249–256.

    PubMed  CAS  Google Scholar 

  • Etienne, P., Dastoor, D., Gauthier, S., Ludwick, R., and Collier, B., 1981, Alzheimer disease: Lack of effect of lecithin treatment for 3 months, Neurology 31: 1552–1554.

    PubMed  CAS  Google Scholar 

  • Etienne, P., Robitaille, Y., Gauthier, S., and Nair, N. P. V., 1986, Nucleus basalis neuronal loss and neuritic plaques in advanced Alzheimer’s disease, Can. J. Physiol, Pharmacol. 64: 318–324.

    CAS  Google Scholar 

  • Fine, A., Dunnett, S. B., Bjorklund, A., and Iversen, S. D., 1985, Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease, Proc. Natl, Acad. Sei. USA 82: 5227–5230.

    CAS  Google Scholar 

  • Flicker, C, Dean, R. L., Watkins, D. L., Fisher, S. K., and Bartus, R. T., 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat, Pharmacol. Biochem. Behav. 18: 9973–981.

    Google Scholar 

  • Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowden, J. S., and Wilcock, G. K., 1985, Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment, N. Engl. J. Med. 313: 7–11.

    PubMed  CAS  Google Scholar 

  • German, D. C, White, C. L., III, and Sparkman, D. R. 1986, Alzheimer’s disease: Neurofibrillary tangles in nuclei that project to the cerebral cortex, Neuroscience 21: 305–312.

    Google Scholar 

  • Glenn, L. L., Hada, J., Roy, J. P., Doscheres, M., and Steriade, M., 1982, Anterograde tracer and field potential analysis of the neocortical layer I projection from the nucleus ventralis medialis of the thalamus in cat, Neuroscience 7: 1861–1877.

    PubMed  CAS  Google Scholar 

  • Hallanger, A. E., Levey, A. I., Rye, D. B., and Wainer, B. H., 1987, The origin of cholinergic and other subcortical afferents to the thalamus in the rat, J. Comp. Neurol. 262: 105–124.

    PubMed  CAS  Google Scholar 

  • Hardy, J. A., Mann, D. M. A., Wester, P., and Winblad, B., 1987, An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease, Neurobiol. Aging 7: 489–502.

    Google Scholar 

  • Hedreen, J. C, and Struble, P. J., 1984, Topography of the magnocellular basal forebrain systems in human brain, J. Neuropathol. Exp. Neurol. 43: 1.

    PubMed  CAS  Google Scholar 

  • Hefti, F., and Weiner, W. J., 1986, Nerve growth factor and Alzheimer’s disease, Ann. Neurol. 20: 275–281.

    PubMed  CAS  Google Scholar 

  • Hepler, D. J., Olton, D. S., Wenk, G. L., and Coyle, J. T., 1985, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments, J. Neurosci. 5: 866–873.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J Comp. Neurol. 183: 487–518.

    PubMed  CAS  Google Scholar 

  • Herzog, A. G., and Kemper, T. L., 1980, Amygdaloid changes in aging and dementia, Arch. Neurol. 37: 625–629.

    PubMed  CAS  Google Scholar 

  • Hirano, A., and Zimmerman, H. M., 1962, Alzheimer neurofibrillary changes. A topographic study, Arch. Neurol. 7: 227–242.

    PubMed  CAS  Google Scholar 

  • Hooper, M. W., and Vogel, F. S., 1976, The limbic system in Alzheimer’s disease, Am. J. Pathol. 85: 1–13.

    Google Scholar 

  • Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M., and Vaughn, J. E., 1983, Organization and morphological characteristics of cholinergic neurons: An immu-nocytochemical study with a monoclonal antibody to choline acetyltransferase, Brain Res. 266: 97–119.

    PubMed  CAS  Google Scholar 

  • Hyman, B. T., van Hoesen, G. W., Damasio, A. R., and Barnes, C. L., 1984, Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation, Science 225: 1168–1170.

    PubMed  CAS  Google Scholar 

  • Hyman, B. T., van Hoesen, G. W., Kromer, L. J., and Damasio, A. R., 1986, Perforant pathway changes and the memory impairment of Alzheimer’s disease, Ann. Neurol. 20: 472–481.

    PubMed  CAS  Google Scholar 

  • Ishii, T., 1966, Distribution of Alzheimer’s disease neurofibrillary changes in the brain stem and hypothalamus of senile dementia, Acta Neuropathol. 6: 181–187.

    PubMed  CAS  Google Scholar 

  • Jamada, M., and Mehraein, P., 1968, Verteilungsmuster der senilen Veränderungen im gehirn. Die beteiligung des limbischen systems bei hirnatrophischen prozessen des Seniums und bei morbus Alzheimer, Arch. Psychiatr. Nervenkr. 211: 308–324.

    PubMed  CAS  Google Scholar 

  • Johnston, M. V., McKinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc. Natl. Acad. Sei. USA 76: 5392–5396.

    CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 93: 793–820.

    PubMed  CAS  Google Scholar 

  • Kemper, T. L., 1983, Organization of the neuropathology of the amygdala in Alzheimer’s disease, in: Biological Aspects of Alzheimer’s Disease (R. Katzman, ed)., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 31–35.

    Google Scholar 

  • Kitt, C. A., Price, D. L., Struble, R. G., Cork, L. C, Wainer, B. H., Becker, M. W., and Mobley, W. C, 1984, Evidence for cholinergic neurites in senile plaques, Science 226: 1443–1445.

    PubMed  CAS  Google Scholar 

  • Köhler, C, and Swanson, L. W., 1984, Acetylcholinesterase-containing cells in the lateral hypothalamic area are immunoreactive for alpha-melanocyte stimulating hormone (alpha-MSH) and have cortical projections in the rat, Neurosci. Lett. 49: 39–43.

    PubMed  Google Scholar 

  • Köhler, C, Chan-Palay, V., and Wu, J. Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol. 169: 41–44.

    PubMed  Google Scholar 

  • Köhler, C, Swanson, L. W., Haglund, L., and Wu, J. Y., 1985, The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat, Neuroscience 16: 85–110.

    PubMed  Google Scholar 

  • Kosel, K. C, van Hoesen, G. W., and Rosene, D. L., 1982, Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey, Brain Res. 244: 201–213.

    PubMed  CAS  Google Scholar 

  • Kristt, D. A., McGowan, R. A., Jr., Martin-MacKinnon, M., and Solomon, J., 1985, Basal forebrain innervation of rodent neocortex: studies using acetylcholinesterase histochemistry, Golgi and lesioning strategies, Brain Res. 337: 19–39.

    PubMed  CAS  Google Scholar 

  • Lehmann, J., Nagy, J. I., Atmadja, S., and Fibiger, H. C, 1980, The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat, Neuroscience 5: 1161–1174.

    PubMed  CAS  Google Scholar 

  • Levey, A. I., Hallanger, A. E., and Wainer, B. H., 1987, Cholinergic nucleus basalis neurons may influence the cortex via the thalamus, Neurosci. Lett. 74: 7–13.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., and Angeletti, P. U., 1968, Nerve growth factor, Physiol. Rev. 48: 534–569.

    PubMed  CAS  Google Scholar 

  • LoConte, G., Casamenii, F., Bigl, V., Milaneschi, E., and Pepeu, G., 1982, Effect of magnocellular forebrain nuclei lesions on acetylcholine output from the cerebral cortex: Electrocorticogram and behavior, Arch. Ital. Biol. 120: 176–188.

    CAS  Google Scholar 

  • Mann, D. M. A., Yates, P. O., and Marcyniuk, B., 1985, Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures in Alzheimer’s disease, Neurosci. Lett. 56: 51–55.

    PubMed  CAS  Google Scholar 

  • Mann, D. M. A., Yates, P. D., and Marcyniuk, B., 1986, A comparison of nerve cell loss in cortical and subcortical structures in Alzheimer’s disease, J. Neurol, Neurosurg. Psychiatry 49: 310–312.

    CAS  Google Scholar 

  • Marcyniuk, B., Mann, D. M. A., and Yates, P. O., 1986, Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged, Neurosci. Lett. 64: 247–252.

    PubMed  CAS  Google Scholar 

  • McDuff, T., and Sumi, S. M., 1985, Subcortical degeneration in Alzheimer’s disease, Neurology 35: 123–126.

    PubMed  CAS  Google Scholar 

  • McKinney, M., Coyle, J. T., and Hedreen, J. C, 1983, Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system, J. Comp. Neurol. 217: 103–121.

    PubMed  CAS  Google Scholar 

  • Melander, T., Hokfelt, T., and Rokaeus, A., 1986, Distribution of galanin-like immunoreactivity in the rat central nervous system, J. Comp. Neurol. 248: 475–517.

    PubMed  CAS  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Levey, A. I., and Wainer, B. H., 1983, Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214: 170–197.

    PubMed  CAS  Google Scholar 

  • Miyakawa, T., Shimoji, A., Kuramoto, R., and Higuchi, Y., 1982, The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia, Virchows Arch. (Cell Pathol.) 40: 121–129.

    CAS  Google Scholar 

  • Nakamura, S., and Vincent, S. R., 1986, Somatostatin- and neuropeptide Y-immunoreac-tive neurons in the neocortex in senile dementia of Alzheimers type. Brain Res. 370: 11–20.

    PubMed  CAS  Google Scholar 

  • Nakano, I., and Hirano, A., 1982, Loss of large neurons of the medial septal nucleus in an autopsy case of Alzheimer’s disease, J. Neuropathol. Exp. Neurol, 41: 341.

    Google Scholar 

  • Pandya, D. N., and Kuypers, H. G. J. M., 1969, Cortico-cortical connections in the rhesus monkey, Brain Res. 13: 13–16.

    PubMed  CAS  Google Scholar 

  • Panula, P., Yang, H. Y., and Costa, E., 1984, Histamine-containing neurons in the rat hypothalamus, Proc. Natl, Acad. Sei. USA-Biol, Sei. 81: 2572–2576.

    CAS  Google Scholar 

  • Patel, B. T., Tudball, N., Wada, H., and Watanabe, T., 1986, Adenosine deaminase and histidine decarboxylase coexist in certain neurons of the rat brain, Neurosci. Lett. 63: 185–189.

    PubMed  CAS  Google Scholar 

  • Pearson, R. C. A., Gatter, K. C, Brodal, P., and Powell, T. P. S., 1983, The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res. 259: 132–136.

    PubMed  CAS  Google Scholar 

  • Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C, Powell, T. P. S., Eckenstein, F., Esiri, M. M., and Wilcock, G. K., 1984, Persistance of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immu-nohistochemical staining for choline acetyltransferase, Bram Res. 289: 375–379.

    Google Scholar 

  • Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilocock, G. K., and Powell, T. P. S., 1985, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sei. USA 82: 4531–4534.

    CAS  Google Scholar 

  • Price, D. L., 1986, New perspectives on Alzheimer’s disease, Annu. Rev. Neurosci. 9: 489–512.

    PubMed  CAS  Google Scholar 

  • Price, D. L., and Griffin, J. W., 1977, Tetanus toxin: retrograde axonal transport of systemically administered toxin, Neurosci. Lett. 4: 61–65.

    PubMed  CAS  Google Scholar 

  • Price, D. L., Whitehouse, P. J., Struble, R. G., Clark, A. W., Coyle, J. T., DeLong, M. R., and Hedreen, J. C, 1982, Basal forebrain cholinergic systems in Alzheimer’s disease and related dementias, Neurosci. Commentaries 1: 84–92.

    Google Scholar 

  • Price, D. L., Powers, R. E., Walker, L. C, Struble, R. G., Whitehouse, P. J., Vale, W. W., and De Souza, E. B., 1986, Corticotropin-releasing factor immunoreactivity in senile plaques, Soc. Neurosci. Abstr. 12: 98.

    Google Scholar 

  • Price, J. L., and Stern, R., 1983, Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat, Brain Res. 269: 352–356.

    PubMed  CAS  Google Scholar 

  • Proctor, A. W., Palmer, A. M., Stratmann, G. C, and Bowen, D. M., 1986, Gluta-mate/aspartate-releasing neurons in Alzheimer’s disease, N. Engl. J. Med. 314: 1711–1712.

    Google Scholar 

  • Rasool, C. G., Svendsen, C. N., and Selkoe, D. J., 1986, Neurofibrillary degeneration of cholinergic and noncholinergic neurons of the basal forebrain in Alzheimer’s disease, Ann. Neurol. 20: 482 - 488.

    PubMed  CAS  Google Scholar 

  • Rogers, J., and Morrison, J. H., 1985, Quantitative morphology and regional and laminar distribution of senile plaques in Alzheimer’s disease, J. Neurosci. 5: 2801–2808.

    PubMed  CAS  Google Scholar 

  • Rossor, M. N., Emson, P. C, Mountjoy, C. Q., Roth, M., and Iversen, L. L., 1980, Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type, Neurosci. Lett. 20: 373–377.

    PubMed  CAS  Google Scholar 

  • Rudelli, R. D., Ambler, M. W., and Wisniewski, H. M., 1984, Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon, Acta Neuropathol. 64: 273–281.

    PubMed  CAS  Google Scholar 

  • Rye, D. B., Wainer, B. H., Mesulam, M. M., Mufson, E. J., and Saper, C. B., 1984, Cotrical projections from the basal forebrain: A study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neuroscience 13: 627–643.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., 1984, Organization of cerebral cortical afferent systems in the rat. I. Magno-cellular basal nucleus, J Comp. Neurol. 222: 313–342.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., 1985, Organization of cerebral cortical afferent systems in the rat. II. Hypoth-alamocortical projections, J Comp. Neurol. 237: 21–46.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., 1987, Diffuse cortical projection systems: Anatomical organization and role in cortical function, in: Handbook of Physiology. The Nervous System V ( F. Plum, ed.), pp. 169–210, American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Saper, C. B., and Chelimsky, T. C, 1984, A cytoarchtectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain, Neuroscience 13: 1023–1037.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., and German, D. C, 1987, Hypothalamic pathology in Alzheimer’s disease, Neurosci. Lett. 74: 364–370.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., and Loewy, A. D., 1982, Projections of the pedunculopontine tegmental nucleus in the rat: Evidence for additional extrapyramidal circuitry, Brain Res. 252: 367–372.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., German, D. C, and White, C. L. III, 1985, Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: Possible role in cell loss, Neurology 35: 1089–1095.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., Akil, H., and Watson, S. J., 1986, Lateral hypothalamic innervation of the cerebral cortex: Immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate a-melanocyte stimulating hormone, Brain Res. Bull. 16: 107–120.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., Wainer, B. H., and German, D. C., 1987, Axonal and transneuronal transport in the transmission of neurological disease: Potential role in system degenerations, including Alzheimer’s disease, Neuroscience 23: 389–398.

    PubMed  CAS  Google Scholar 

  • Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., and Iizuka, R., 1986, Regional distribution of amino acid transmitters in postmortem brains of presenile dementia of Alzheimer type, Ann. Neurol. 19: 263–269.

    PubMed  CAS  Google Scholar 

  • Senba, E., Daddona, P. E., Watanabe, T., Wu, J. Y., and Nagy, J. I., 1985, Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat, J. Neurosci. 5: 3393–3402.

    PubMed  CAS  Google Scholar 

  • Shiosaka, S., Shibasaki, T., and Tohyama, M., 1984, Bilateral alpha-melanocyte stimulating hormonergic fiber system from zona incerta to cerebral cortex: Combined retrograde axonal transport and immunohistochemical study, Brain Res. 309: 350–353.

    PubMed  CAS  Google Scholar 

  • Struble, R. G., Cork, L. C, Whitehouse, P. J., and Price, D. L., 1982, Cholinergic innervation in neuritic plaques, Science 216: 413–415.

    PubMed  CAS  Google Scholar 

  • Summers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K., and Kling, A., 1986, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer’s type, N. Engl. J. Med. 315: 1241–1245.

    PubMed  CAS  Google Scholar 

  • Tagliavini, F., and Pilleri, G., 1984, Basal nucleus of Meynert—A neuropathological study in Alzheimer’s disease, simple senile dementia, Pick’s disease and Huntington’s chorea, J. Neurol. Sa. 62: 243–260.

    Google Scholar 

  • Tago, H., McGeer, P. L., McGeer, E. G., and Sastry, B. R., 1986, Acetycholinesterase histochemistry in the cerebral cortex of Alzheimer’s disease, Soc. Neurosci. Abstr. 12: 1245.

    Google Scholar 

  • Taminga, C. A., Foster, N. L., and Chase, T. N., 1985, Reduced brain somatostatin levels in Alzheimer’s disease, N. Engl. J. Med. 313: 1294–1295.

    Google Scholar 

  • Terry, R. D., and Katzman, R., 1983, Senile dementia of Alzheimer’s type, Ann. Neurol. 14: 497–506.

    PubMed  CAS  Google Scholar 

  • Thal, L. J., Rosen, W., Sharpless, N. S., and Crystal, H., 1981, Choline chloride in Alzheimer’s disease, Ann. Neurol. 10: 581.

    Google Scholar 

  • Thal, L. J., Fuld, P. A., Masur, D. M., and Sharpless, N. S., 1983, Oral physostigmine and lecithin improve memory in Alzheimer disease, Ann. Neurol. 13: 491–496.

    PubMed  CAS  Google Scholar 

  • Tomlinson, B. E., Blessed, G., and Roth, M., 1970, Observations on the brains of demented old people, J. Neurol. Sei. 11: 205–242.

    CAS  Google Scholar 

  • Turner, B. H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey, J. Comp. Neurol. 191: 515–543.

    PubMed  CAS  Google Scholar 

  • van Hoesen, G. W., 1982, The parahippocampal gyrus. New observations regarding its cortical connections in the monkey, Trends Neurosci. 5: 345–350.

    Google Scholar 

  • van Holsen, G. W., and Pandya, D. N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections, Brain Res. 95: 39–59.

    Google Scholar 

  • van Holsen, G. W., Pandya, D. N., and Butters, N., 1972, Cortical afferents to the entorhinal cortex of the rhesus monkey, Science 175: 1471–1473.

    Google Scholar 

  • Vincent, S. R., Hokfelt, T., Skirboll, L. R., and Wu, J. Y., 1983a, Hypothalamic gamma-amino butyric acid neurons project to the neocortex, Science 220; 1309–1311.

    PubMed  CAS  Google Scholar 

  • Vincent, S. R., Satoh, H., Armstrong, D. M., and Fibiger, H. C, 19836, Substance P in the ascending cholinergic reticular system, Nature 306: 688–691.

    Google Scholar 

  • Walker, L. C., Kitt, C. A., DeLong, M. R., and Price, D. L., 1985a, Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates, Brain Res. Bull. 15: 307–314.

    PubMed  CAS  Google Scholar 

  • Walker, L. C, Kitt, C. A., Struble, R. G., Schmechel, D. E., Oertel, W. H., Cork, L. C, and Price, D. L., 19856, Glutamic acid decarboxylase-like immunoreactive neurites in senile plaques, Neurosci. Lett. 59: 165–169.

    Google Scholar 

  • Wettstein, A., 1983, No effect from double-blind trial of physostigmine and lecithin in Alzheimer disease, Ann. Neurol. 13: 210–212.

    PubMed  CAS  Google Scholar 

  • Whishaw, I. Q., O’Connor, W. T., and Dunnett, S. B., 1985, Disruption of central cholinergic systems in the rat by basal forebrain lesions or atropine: Effects on feeding sensorimotor behaviour, locomotor activity and spatial navigation, Behav. Brain Res. 17: 103.

    PubMed  CAS  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and DeLong, M. R., 1981, Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol. 10: 122–126.

    PubMed  CAS  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.

    PubMed  CAS  Google Scholar 

  • Wisniewski, H. M., and Terry, R. D., 1973, Reexamination of the pathogenesis of the senile plaque, Progr. Neuropathol. 2: 1–26.

    Google Scholar 

  • Yamada, M., and Mehraein, P., 1977, Verteilungsmuster der senilen Veränderungen in den hirnstammkernen, Folia Psychiatr. Neurol. Jpn. 31: 219–224.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., and Hirano, A., 1985, Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons, Ann. Neurol. 17: 573–577.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Saper, C.B. (1988). Chemical Neuroanatomy of Alzheimer’s Disease. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0933-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0933-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8252-5

  • Online ISBN: 978-1-4613-0933-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics