Phylogeny of Early Vertebrate Skeletal Induction and Ossification Patterns

  • John G. Maisey
Part of the Evolutionary Biology book series (EBIO, volume 22)


The past 40 years has witnessed the demise of paleontology as a panacea with the ability to vindicate great phylogenetic theories. Today the role of fossils has been quite sharply defined (e.g., Hennig, 1965; Schaeffer et al., 1972; Nelson, 1978; Gaffney, 1979; Cracraft, 1979; Patterson, 1981a,b). The fossil record nevertheless provides useful data by refuting putative synapomorphies and by revealing nonhomology among living taxa, by suggesting sequential acquisitions of characters, and by providing supplemental biogeographic data (Patterson, 1981a). In these regards, fossils perform like newly discovered Recent taxa, but the paleontological data are potentially more dynamic in adding the element of geological time (hence giving minimum dates for taxic divergence and for biogeographic and other evolutionary events). Furthermore, the chances of discovering phylogenetically intermediate taxa (whether they are called “sister groups,” “ancestors,” “stem taxa,” “missing links,” or whatever) are inherently greater in fossil biotas than in Recent ones (vide the taxic paucity of “living fossils,” such as monotremes, coelacanths, cladistians [polypterids], agnathans, etc., versus the relative abundance of primitive Mesozoic mammals, fossil sarcopterygians, “palaeoniscoids,” and Paleozoic agnathans).


Neural Crest Fossil Record Paleontological Data Early Vertebrate Lateral Plate Mesoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beard, J., 1888, The teeth of myxinoid fishes, Anat. Anz. 3: 169–172.Google Scholar
  2. Beard, J., 1889, Morphological studies No. 3. The nature of the teeth of marsipobranch fishes, Zool. Jahrb. 3: 727–752.Google Scholar
  3. Behrends, G., 1892, Ueber Hornzähne, Nova Acta Leopold. Carol. 58: 437–475.Google Scholar
  4. Benda, C., 1882, Die Dentinbildung in den Hautzahmen der Selachier, Arch. Mikrodk. Anat. 20 (2): 246–270.Google Scholar
  5. Bendix-Almgreen, S. E., 1983, Carcharodon megalodon from the Upper Miocene of Denmark, with comments on elasmobranch tooth enameloid: Coronoin, Bull. Geol. Soc. Denmark 32: 1–32.Google Scholar
  6. Benoit, J. A. A., and Schowing, J., 1970, Morphogenesis of the neurocranium, in: Tissue Interactions during Organogenesis (E. Wolff, ed.), pp. 105–140, Gordon & Breach, New York.Google Scholar
  7. Bertin, L., 1958, Ecailles et sclérification dermiques, in: Traité de Zoologie, Tome XIII (Agnathes et Poissons) ( P. P. Grassé, ed.), pp. 482–504, Masson, Paris.Google Scholar
  8. Bujard, E., 1931, Cartilage et os, Bull. Histol. Appl. Physiol. Pathol. 8 (9): 265–271.Google Scholar
  9. Chibon, P., 1970, L’Origine de l’organe adamantin des dents. Etude au moyen du marquage nucléaire de l’ectoderme stomodeal, Ann. Embryol. Morphogen. 3 (2): 203–213.Google Scholar
  10. Chibon, P., 1974, Un systéme morphogénétique remarquable: La crête neurale des vertébrés, Ann. Biol. 13: 459–480.Google Scholar
  11. Cracraft, J., 1979, Phylogenetic analysis, evolutionary models, and paleontology, in: Phylogenetic Analysis and Paleontology ( J. Cracraft and N. Eldredge, eds.), pp. 7–39, Columbia University Press, New York.Google Scholar
  12. Daget, J., 1965, Le crâne des téléostéens, Mem. Mus. Natl. Hist. Nat. Paris N. S. (A) 31: 163–341.Google Scholar
  13. Dawson, J. A., 1963, The oral cavity, the “jaws” and the horny teeth of Myxine glutinosa, in: The Biology of Myxine ( A. Brodol and R. Fänge, eds.), pp. 231–255, Universitetsforlaget, Oslo.Google Scholar
  14. Dean, B., 1895, Fishes, Living and Fossil, Macmillan, New York.Google Scholar
  15. Dean, B., 1909, Studies on fossil fishes (sharks, chimaeroids and arthrodires), Mem. Am. Mus. Nat. Hist. 9: 209–287.Google Scholar
  16. Denison, R. H., 1951, The exoskeleton of early Osteostraci, Fieldiana, Geol. 11(3/4):199-218.Google Scholar
  17. Denison, R. H., 1963, The early history of the vertebrate calcified skeleton, Clin. Orthopaed. 31: 141–152.Google Scholar
  18. Denison, R. H., 1967, Ordovician vertebrates from western United States, Fieldiana, Geol. 16 (6): 131–192.Google Scholar
  19. Denison, R. H., 1973, Growth and wear of the shield in Pteraspidae (Agnatha), Palaeontogr. Abt. A 143: 1–10.Google Scholar
  20. Denison, R., 1978, Placodermi, in: Handbook of Paleoichthyology ( H. P. Schultze, ed.), Vol. 2, pp. 128, Gustav Fischer, Stuttgart.Google Scholar
  21. Forey, P. L., 1980, Latimeria: A Paradoxical Fish, Proc. R. Soc. Lond. B 208 (1172): 369–384.Google Scholar
  22. Forey, P. L., 1984, Yet more reflections on agnathan-gnathostome relationships, J. Vert. Paleontol. 4 (3): 330–343.Google Scholar
  23. Gaffney, E. S., 1979, Tetrapod monophyly: A phylogenetic analysis, Bull. Carnegie Mus. Nat. Hist. 13: 92–105.Google Scholar
  24. Gardiner, B. G., 1984a, The relationship of placoderms, J. Vert. Paleontol. 4 (3): 379–395.Google Scholar
  25. Gardiner, B. G., 1984b, The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia, Br. Mus. (Nat. Hist.) Bull. (Geol.) 37: 173–427.Google Scholar
  26. Goodrich, E. S., 1909, Cyclostomes and fishes, in: A Treatise on Zoology (E. R. Lankester, ed.), Vol. 9, Vertebrata Craniata, pp. 518, A. + C. Black, London.Google Scholar
  27. Goujet, D. F., 1984, Placoderm interrelationships: A new interpretation, with a short review of placoderm classifications, Proc. Linn. Soc. NSW 107: 211–243.Google Scholar
  28. Gross, W., 1930, Die Fische des mittleren Old Red Süd-Livlands, Geol. Palaeontol. Abh. N. F. 18: 123–156.Google Scholar
  29. Gross, W., 1936, Histologische Studien am Außenskelett fossiler Agnathen und Fische, Palaeontogr. Abt. A 83: 1–60.Google Scholar
  30. Gross, W., 1961, Aufbau des Panzers obersilurischer Heterostraci und Osteostraci Norddeutschlands (Geschiebe) und Oesels, Acta Zool. 42: 73–150.Google Scholar
  31. Gross, W., 1966, Kleine Schuppenkunde, Neves Jahrh. Geol. Palaeontol. Abh. 125: 29–48.Google Scholar
  32. Hall, B. K., 1975, Evolutionary consequences of skeletal differentiation, Am. Zool. 15: 329–350.Google Scholar
  33. Hall, B. K., 1978, Developmental and Cellular Skeletal Biology,Academic Press, New York. Hall, B. K., 1980, Chondrogenesis and osteogenesis of cranial neural crest cells, in: Current Google Scholar
  34. Research Trends in Prenatal Craniofacial Development (R. M. Pratt and R. L. Christiansen, eds.), pp. 47–64, Elsevier/North-Holland, New York.Google Scholar
  35. Hall, B. K., 1982a, Tissue interactions and chondrogenesis, in: Development, Differentiation and Growth ( B. K. Hall, ed.), pp. 187–222, Academic Press, New York.Google Scholar
  36. Hall, B. K., 1982b, How is mandibular growth controlled during development and evolution?, J. Craniofac. Genet. Dev. Biol. 2: 45–49.PubMedGoogle Scholar
  37. Hall, B. K., 1983, Epigenetic control in development and evolution, in: The British Society for Developmental Biology, Development and Evolution ( B. C. Goodwin, N. Holder, and C. G. Wylie, eds.), pp. 353–379, Cambridge University Press, Cambridge.Google Scholar
  38. Hall, B. K., and Hanken, J., 1985, Foreward, in: The Development of the Vertebrate Skull (G. R. de Beer, ed.), pp. vii-xxviii, University of Chicago Press, Chicago.Google Scholar
  39. Halstead, L. B., 1969a, Calcified tissues in the earliest vertebrates, Cale. Tiss. Res. 3: 107–124.Google Scholar
  40. Halstead, L. B., 1969b, The Pattern of Vertebrate Evolution, Oliver and Boyd, Edinburgh. Halstead, L. B., 1974, Vertebrate Hard Tissues, Wykeham, London.Google Scholar
  41. Halstead, L. B., 1982, Evolutionary trends and the phylogeny of the Agnatha, in: Problems of Phylogenetic Reconstruction, (Systematics Association Special Volumes, No. 21, K.Google Scholar
  42. A. Joysey and A. E. Friday eds.), pp. 159–196, Academic Press, London.Google Scholar
  43. Halstead-Tarlo, B. J., and Halstead, L. B., 1965, The origin of teeth, Discovery 26:20–26.Google Scholar
  44. Hardisty, M. W., 1979, Biology of the Cyclostomes, Chapman & Hall, London.Google Scholar
  45. Hardisty, M. W., 1982, Lampreys and hagfishes: Analysis of cyclostome relationships, in: The Biology of Lampreys, vol. 4B (M. W. Hardisty and I. C. Potter, eds.), pp. 165–200, Academic Press, New York.Google Scholar
  46. Hennig, W., 1965, Phylogenetic Systematics, Annu. Rev. Entomol. 10: 97–116.Google Scholar
  47. Herold, R. C., Grawer, H. T., and Chistner, P., 1980, Immunohistochemical localization of amelogenins in enameloid of lower vertebrate teeth, Science 207: 1357–1358.PubMedGoogle Scholar
  48. Hinchliffe, J. R., and Johnson, D. R., 1980, The Development of the Vertebrate Limb, Clarendon Press, Oxford.Google Scholar
  49. Holmgren, N., 1940, Studies on the head in fishes. Part I, Development of the skull in sharks and rays, Acta Zool. 21: 51–257.Google Scholar
  50. Holmgren, N., 1942, Studies on the head in fishes: Part III. The phylogeny of elasmobranch fishes, Acta Zool. Stockholm 23: 129–261.Google Scholar
  51. Holtzer, H., and Detwiler, S. R., 1953, An experimental analysis of the development of the spinal column. III. Induction of skeletogenous cells, J. Exp. Zool. 123: 335–366.Google Scholar
  52. Hörstadius, S., 1950, The Neural Crest. Its Properties and Derivatives in the Light of Ex- perimental Research, Oxford University Press, London.Google Scholar
  53. Jacobson, W., and Fell, H. B., 1941, The developmental mechanics and potencies of the undifferentiated mesenchyme of the mandible, Q. J. Microscop. Sci. 82: 563–586.Google Scholar
  54. Janvier, P., 1981, The phylogeny of the Craniata, with particular reference to the significance of fossil “Agnathans,” J. Vert. Paleontol. 1 (2): l21–159.Google Scholar
  55. Janvier, P., 1984, The relationships of the Osteostraci and Galeaspida, J. Vert. Paleontol. 4 (3): 344–358.Google Scholar
  56. Jarvik, E., 1959, Dermal fin-rays and Holmgren’s principle of delamination, K. Svenska Vetensk. Akad. Handl. (4) 6: 1–51.Google Scholar
  57. Jollie, M., 1968, Some implications of the acceptance of a delamination principle, in: Nobel Symposium 4, Current Problems in Lower Vertebrate Phylogeny (T. Orvig, ed.), pp. 89–107, Almquist & Wiksell, Stockholm.Google Scholar
  58. Jollie, M., 1971, Some developmental aspects of the head skeleton of the 35–37 mm Squalus acanthias foetus, J. Morphol. 133: 17–40.PubMedGoogle Scholar
  59. Kemp, N. E., and Westrin, S. K., 1979, Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks, J. Morphol. 160: 75–102.PubMedGoogle Scholar
  60. Kerr, T., 1960, Development and structure of some actinopterygian and urodele teeth, Proc. Zool. Soc. Lond. 133: 401–422.Google Scholar
  61. Krebs, B., 1961, Uber einen Flossenstacheln von Gyracanthus, (Acanthodii) aus dem Oberkarbon Englands, Ecl. Geol. HeIv. 53: 811–827.Google Scholar
  62. Krejsa, R. J., 1979, The comparative anatomy of the integumental system, in: Hyman’s Comparative Vertebrate Anatomy ( M. H. Wake, ed.), 3rd ed., pp. 112–191, University of Chicago, Chicago.Google Scholar
  63. Lash, J. W., Holtzer, S., and Holtzer, H., 1957, An experimental analysis of the development of the spinal column. VI. Aspects of cartilage induction, Exp. Cell Res. 13: 292–303.PubMedGoogle Scholar
  64. Le Douarin, N., 1982, The Neural Crest, Cambridge University Press, London.Google Scholar
  65. Levine, P. T., Glimcher, M. J., Seyer, J. M., Huddleston, J. I., and Hein, J. W., 1966, Non-collagenous nature of the proteins of shark enamel, Science 154: 1192–1194.PubMedGoogle Scholar
  66. Lorch, I. J., 1949, The distribution of alkaline phosphatase in relation to calcification in Scyliorhinus canicula. Development of the endoskeleton, Q. J. Microscop. Sci. 90: 381–390.Google Scholar
  67. Løvtrup, S., 1977, The Phylogeny of Vertebrata, Wiley, London.Google Scholar
  68. Maisey, J. G., 1974, Chondrichthyan Dorsal Spines and the Relationships of Spinate Chondrichthyans, Ph. D. Thesis, University of London.Google Scholar
  69. Maisey, J. G., 1975, The interrelationships of phalacanthous selachians, Neues Jahrb. Geol. Palaeontol. 9: 553–567.Google Scholar
  70. Maisey, J. G., 1977, Structural notes on a cladoselachian dorsal spine, Neues Jahrb. Geol. Palaeontol. Monatsh. H. L 1977: 47–55.Google Scholar
  71. Maisey, J. G., 1978, Growth and form of finspines in hybodont sharks, Palaeontology 21 (3): 657–666.Google Scholar
  72. Maisey, J. G., 1979, Finspine morphogenesis in squalid and heterodontid sharks, Zool. J. Linn. Soc. 66: 161–183.Google Scholar
  73. Maisey, J. G., 1984, Chondrichthyan phylogeny: A look at the evidence, J. Vert. Paleontol. 4 (3): 359–371.Google Scholar
  74. Maisey, J. G., 1986, Heads and tails: A chordate phylogeny, Cladistics 2: 201–256.Google Scholar
  75. Mallatt, J., 1984, Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes, J. Zool. 204 (2): 169–183.Google Scholar
  76. Markert, F., 1896, Die Flossenstacheln von Acanthias; ein Beitrag zur Kenntriss der Hartsubstanzgebilde der Elasmobranchier, Zool. Jahrb. Anat. 9: 665–730.Google Scholar
  77. Miles, R. S., 1973, Relationships of acanthodians, in: Interrelationships of Fishes ( P. H. Greenwood, R. S. Miles, and C. Patterson, eds.), pp. 63–103, Academic Press, London.Google Scholar
  78. Moss, M. L., 1964a, The phylogeny of mineralized tissues, Int. Rev. Gen. Exp. Zool. 1: 297–331.Google Scholar
  79. Moss, M. L., 1964b, Development of cellular dentine and lepidosteal tubules in the Bowfin, Amia calva, Acta Anat. 58: 333–354.PubMedGoogle Scholar
  80. Moss, M. L., 1968a, Bone, dentine, and enamel and the evolution of vertebrates, in: Biology of the Mouth, pp. 37–65, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  81. Moss, M. L., 1968b, The origin of vertebrate calcified tissues, in: Current Problems of Lower Vertebrate Phylogeny ( T. Orvig, ed.), pp. 359–371, Almquist and Wiksell, Stockholm.Google Scholar
  82. Moss, M. L., 1970, Enamel and bone in shark teeth: With a note on fibrous enamel in fishes, Acta Anat. 77 (2): 161–187.PubMedGoogle Scholar
  83. Moss, M. J., 1977, Skeletal tissues in sharks, Am. Zool. 17: 335–342.Google Scholar
  84. Moy-Thomas, J., and Miles, R. S., 1971, Palaeozoic fishes, 2nd ed., W. B. Saunders, Philadelphia.Google Scholar
  85. Nelson, G., 1978, Ontogeny, phylogeny, paleontology, and the biogenetic law, Sysi. Zool. 27: 324–345.Google Scholar
  86. Noden, D. M., 1984, Craniofacial development: New views on old problems, Anat. Rec. 208: 1–13.PubMedGoogle Scholar
  87. Ørvig, T., 1951, Histologic studies of placoderms and fossil elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in geneal, Ark. Zool. 2 (2): 321–454.Google Scholar
  88. Ørvig, T., 1957, Paleohistological notes. 1. On the structure of the bone tissue in the scales of certain Palaeonisciformes, Ark. Zool. 10: 481–490.Google Scholar
  89. Ørvig, T., 1965, Paleohistological notes. II. Certain comments on the phyletic significance of acellular bone tissue in early vertebrates, Ark. Zool. 16: 551–556.Google Scholar
  90. Ørvig, T., 1967, Phylogeny of tooth tissues: Evolution of some calcified tissues in early vertebrates, in: Structural and Chemical Organization of Teeth, pp. 45–110, Academic Press, New York.Google Scholar
  91. Ørvig, T., 1968, The dermal skeleton: General considerations, in: Nobel Symposium 4, Current Problems in Lower Vertebrate Phylogeny (T. Orvig, ed.), Almquist & Wiksell, Stockholm, pp. 373–397.Google Scholar
  92. Ørvig, T., 1969, Cosmine and cosmine growth, Lethaia 2: 241–260.Google Scholar
  93. Ørvig, T., 1977, A survey of odontodes (`dermal teeth’) from developmental, structural, functional and phyletic points of view, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), Linnean Society Symposium Series, Vol. 4, pp. 53–75.Google Scholar
  94. Parenti, L. R., 1986, The phylogenetic significance of bone types in euteleost fishes, Zool. J. Linn. Soc. 87: 37–51.Google Scholar
  95. Patterson, C., 1965, The phylogeny of the chimaeroids, Phil. Trans. Soc. Lond. B 249: 101–219.Google Scholar
  96. Patterson, C., 1977, The contribution of paleontology to teleostean phylogeny, in: Major Patterns in Vertebrate Evolution ( M. K. Hecht, P. C. Goody, and B. M. Hecht, eds.) pp. 579–643, Plenum Press, New York.Google Scholar
  97. Patterson, C., 1981a, Significance of fossils in determining evolutionary relationships, Annu. Rev. Ecol. Syst. 12: 195–223.Google Scholar
  98. Patterson, C., 198lb,Agassiz, Darwin, Huxley, and the fossil record of teleost fishes, Bull. Br. Mus. (Nat. Hist.) Geol. 35(3):213–224.Google Scholar
  99. Patterson, C., 1982a, Morphological Characters and Homology, in: Problems of Phylogenetic Reconstruction (Systematics Association Special Volume No. 21; K. A. Joysey and A. E. Friday, eds.), pp. 21–74, Academic Press, New York.Google Scholar
  100. Patterson, C., 1982b, Morphology and interrelationships of primitive Actinopterygian fishes, Am. Zool. 22: 241–259.Google Scholar
  101. Peignoux-Deville, J., Lallier, F., and Vidal, B., 1981, Mise en évidence de tissu osseux dans le squelette axial d’un chondrichthyen: La roussette (Scyliorhinus canicula), C. R. Acad. Sci. Paris III 292: 73–78.Google Scholar
  102. Peyer, B., 1937, Zähne und Gebiss, in: Handbuch de Vergleichenden Anatomie der Wirbelthiere (L. Bolk, E. Goppert, E. Kauius, and W. Lubosch, eds.), Vol. 3, pp. 49–114, Urban & Schwarzenberg, Berlin.Google Scholar
  103. Peyer, B., 1957, Uber die morphologische Deutung der Flossenstacheln einiger Haifische, Mitt. Naturforsch. Ges. Bern. N. F. 14: 159–176.Google Scholar
  104. Peyer, B., 1968, Comparative Odontology, University of Chicago Press, Chicago.Google Scholar
  105. Piez, K. A., 1980, Structure and function of collagen, in: Gene Families of Collagen and Other Proteins ( D. J. Prockop and J. Champre, eds.), pp. 143–160, Amsterdam, Else-vier.Google Scholar
  106. Poole, D. F. G., 1967, Phylogeny of tooth tissues: Enameloid and enamel in Recent vertebrates, with a note on the history of cementum, in: Structural and Chemical Organisation of Teeth, ( A. E. W. Miles, ed.), Vol. 1, pp. 111–149, Academic Press, New York.Google Scholar
  107. Poole, D. F. G., 1971, An introduction to the phylogeny of calcified tissues, in: Dental Morphology and Evolution ( A. A. Dahlber, ed.), pp. 65–79, University of Chicago Press, Chicago.Google Scholar
  108. Reif, W.-E., 1973, Morphologie und Ultrastruktur des Hai-“Schmelzes,” Zool. Scr. 2: 231–250.Google Scholar
  109. Reif, W.-E., 1979, Structural convergences between enameloid of actinopterygian teeth and of shark teeth, Scanning Electron Microsc. 2: 547–554, 546.Google Scholar
  110. Reif, W.-E., 1982, Evolution of dermal skeleton and dentition in vertebrates: The odontode regulation theory. Evol. Biol. 15: 287–368.Google Scholar
  111. Ritchie, A., 1964, New evidence on the morphology of the Norwegian Anaspida, Norsk. Videnskaps-Akad. 14: 1–21.Google Scholar
  112. Ritchie, A., 1980, The late Silurian Anaspid genus Rhyncholepis from Oesel, Estonia, and Ringerike, Norway, Am. Mus. Novit. 2699: 1–18.Google Scholar
  113. Romer, A. S., 1963, The ancient history of bone, Ann. N. Y. Acad. Sci. 109: 168–176.PubMedGoogle Scholar
  114. Romer, A. S., 1964, Bone in early vertebrates, in: Bone Biodynamics (H. M. Frost, ed.) pp. 13–37, Little, Brown & Co., Boston.Google Scholar
  115. Rosen, D. E., Forey, P. L., Gardiner, B. G., and Paterson, C., 1981, Lungfishes, tetrapods, paleontology, and plesiomorphy, Bull. Am. Mus. Nat. Hist. 67 (4): 163–275.Google Scholar
  116. Schaeffer, B., 1961, Differential ossification in the fishes, Trans. N. Y. Acad. Sci. 23 (6): 501–504.PubMedGoogle Scholar
  117. Schaeffer, B., 1975, Comments on the origin and basic radiation of the gnathostome fishes with particular reference to the feeding mechanism, Coll. Int. CNRS 218: 101–109.Google Scholar
  118. Schaeffer, B., 1977, The dermal skeleton in fishes, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), Linnean Society Symposium Series, Vol. 4, pp. 25–52.Google Scholar
  119. Schaeffer, B., Hecht, M., and Eldredge, N., 1972, Phylogeny and paleontology, Evol. Biol. 6: 1–46.Google Scholar
  120. Schowing, J., 1968a, Influence inductrice de l’éncéphale embryonnaire sur le développement du crâne chez le poulet. I. Influence de l’excision des territoires nerveux antérieurs sur le développement crânien, J. Embryol. Exp. Morphol. 19: 9–22.PubMedGoogle Scholar
  121. Schowing, J., 1968b, Influence inductrice de l’éncéphale embryonnaire sur développement du crâne chez le poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et postérieur sur le développement crânien, J. Embryo!. Exp. Morphol. 19: 23–32.Google Scholar
  122. SchowingJ. 1968c, Influence inductrice de l’éncéphale embryonnaire sur développement du crâne chez le poulet. III. Mise en evidence du rôle inducteur de l’encéphale dans l’ostéogenése du crâne embryonnaire du poulet, J. Embryo!. Exp. Morphol. 19:83–94.Google Scholar
  123. Shellis, R. P., and Miles, A. E. W., 1974, Autoradiographic study of the formation of enameloid and dentine matrices in teleost fishes using tritiated amino acids. Proc. R. Soc. Lond. B 185: 51–72.Google Scholar
  124. Shellis, R. P., and Miles, A. E. E., 1976, Observations with the electron microscope on enameloid formation in the common eel (Anguilla anguilla; Teleostei), Proc. R. Soc. Lond. B 194: 253–269.Google Scholar
  125. Shellis, R. P., and Poole, D. F. G., 1978, The structure of the dental hard tissues of the coelacanthid fish Latimeria chalumnae Smith, Arch. Oral Biol. 23: 1105–1113.PubMedGoogle Scholar
  126. Slavkin, H. C., 1985, Current perspectives on enamel proteins, in: The Chemistry and Biology of Mineralized Tissues ( William T. Butler, ed.), pp. 237–239, Ebsco Media, Birmingham, Alabama.Google Scholar
  127. Slavkin, H. C., Graham, E., Zeichner-David, M., and Hildemann, W., 1983a, Enamel-like antigens in hagfish: Possible evolutionary significance, Evolution 37 (2): 404–412.Google Scholar
  128. Slavkin, H. C., Samuel, N., Bringas, P., Jr., Nanci, A., and Santos, V., 1983b, Selachian tooth development: II. Immunolocalization of amelogenin polypeptides in epithelium during secretory amelogenesis in Squalus acanthias, J. Craniofac. Genet. Dev. Biol. 3 (1): 43–52.PubMedGoogle Scholar
  129. Smith, M. M., 1978, Enamel in the oral teeth of Latimeria chalumnae (Pisces: Actinistia): A scanning electron microscope study, J. Zool. Lond. 185: 355–369.Google Scholar
  130. Smith, M. M., 1979, SEM of the enamel layer in oral teeth of fossil and extant crossopterygian and dipnoan fishes, Scanning Electron Microsc. 2: 483–489.Google Scholar
  131. Smith, M. M., and Miles, A. E. W., 1969, An autoradiographic investigation with the light microscope of proline-H3 incorporation during tooth development in the crested newt (Triturus cristatus), Arch. Oral Biol. 14: 479–490.PubMedGoogle Scholar
  132. Smith, M. M., and Miles, A. E. W., 1971, The ultrastructure of odontogenesis in larval and adult urodeles: Differentiation of the dental epithelial cells, Z. Zellforsch. Mikroskop. Anat. 121: 470–498.Google Scholar
  133. Stensiö, E., 1961, Permian vertebrates, in: Geology of the Arctic, ( G. O. Raasch, ed.), pp. 231–247, University of Toronto Press, Toronto.Google Scholar
  134. Stensiö, E. A., 1968, The cyclostomes with special reference to the diphyletic origin of the Petromyzontida and Myxinoidea, in: Nobel Symposium 4, Current Problems of Lower Vertebrate Phylogeny (T. Orvig, ed.), pp. 13–71, Almquist & Wiksell, Stockholm.Google Scholar
  135. Stromer, E., 1927, Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wusten Agyptens. II. Wirbeltier-Reste der Baharije-Stufe (understes Cenoman). 9. Die Plagiostomen, mit einem Anhag über käno-und mesozoische Rückenflossenstacheln von Elasmobranchiern, Abh. Bayer. Akad. Wiss. 31 (5): 1–69.Google Scholar
  136. Strudel, G., 1953, Conséquences de léxcision de troncons du tube nerveux sur la morphogenése de l’embryon de poulet et sur la différenciation de ses organes: Contribution à la genése de l’orthosympathique, Ann. Sci. Nat. (Zool.) 15: 251–329.Google Scholar
  137. Tarlo, L. B. H., 1963, Aspidin: The precursor of bone, Nature 199: 46–48.PubMedGoogle Scholar
  138. Tarlo, L. B. H., 1964, The origin of bone, in: Bone and Tooth ( H. J. J. Blackwood, ed.), pp. 3–17, Pergamon Press, Oxford.Google Scholar
  139. Turner, S., 1985, Remarks on the early history of chondrichthyans, thelodonts, and some “higher elasmobranchs,” New Zealand Geological Survey Record 9, Homibrooh Symposium Extended Abstracts.Google Scholar
  140. Tyler, M. S., and Hall, B. K., 1977, Epithelial influences on skeletogenesis in the mandible of the embryonic chick, Anat. Rec. 188: 229–240.PubMedGoogle Scholar
  141. Wangsjö, G., 1952, The Downtonian and Devonian vertebrates of Spitzbergen. IX. Morphologic and systematic studies of the Spitzbergen cephalaspids, Skrifter-Norsk Polarist. 97: 1–612.Google Scholar
  142. White, E. I., 1958, Original environment of the craniates, in: Studies on Fossil Vertebrates ( T. S. Westoll, ed.), pp. 212–234, Athlone Press, London.Google Scholar
  143. White, E. I., 1973, Form and growth of Belgicaspis (Heterostraci), Palaeontogr. Abt. A 143: 11–24.Google Scholar
  144. Wiley, E. O., 1981, Phylogenetics, Wiley, New York.Google Scholar
  145. Young, G. C., 1986, The relationships of placoderm fishes, Zool. J. Linn. Soc. 88: 1–57.Google Scholar
  146. Zangerl, R., 1966, A new shark of the family Edestidae, Ornithoprion hertwigi from the Pennsylvanian Mecca and Logan Quarry Shales of Indiana, Fieldiana, Geol. 16(1):1–43.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • John G. Maisey
    • 1
  1. 1.Department of Vertebrate PaleontologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations