Anatomic Mechanisms Whereby Ganglioside Treatment Induces Brain Repair

What Do We Really Know?
  • Bernhard A. Sabel


Because exogenous gangliosides have repeatedly been demonstrated to reduce behavioral deficits following various types of brain injury, the anatomic alterations underlying this phenomenon are of particular interest.


Superior Colliculus Axonal Transport Behavioral Improvement Terminal Field Retrograde Axonal Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson, A. L., Zigmond, M. J., and Strieker, E. M., 1980, Compensatory increase in tyrosine hydroxylase activity in rat brain after intraventricular injections of 6-hydroxydopamine, Science 207: 537–540.CrossRefGoogle Scholar
  2. Agnati, L. F., Fuxe, K., Calza, L., Benfenati, F., Cavicchioli, L., Toffano, G., and Goldstein, M., 1983, Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting, Acta Physiol. Scand. 119: 347–363.CrossRefGoogle Scholar
  3. Agnati, L. F., Fuxe, K., Calza, L., Goldstein, M., Toffano, G., Giardino, L., and Zoli, M., 1984, Further studies on the effects of the GM1 ganglioside on the degenerative and regenerative features of mesostriatal dopamine neurons, Acta Physiol. Scand. 532: 37–44.Google Scholar
  4. Bose, B., Osterholm, J. L., and Kalia, M., 1986, Ganglioside-induced regeneration and re- establishment of axonal continuity in spinal cord-transected rats, Neurosci. Lett. 63: 165–169.Google Scholar
  5. Byrne, M. C., Ledeen, R. W., Roisen, F. J., Yorke, G., and Sclafani, J. R., 1983, Ganglioside- induced neuritogenesis: Verification that gangliosides are the active agent, and comparison of molecular species, J. Neurochem. 41: 1222.Google Scholar
  6. Carmignoto, G., Canella, R., and Bisti, S., 1984, Can functional reorganization of area 17 following monocular deprivation be modified by GM1 internal ester treatment ? J. Neurosci. Res. 12: 477–483.CrossRefGoogle Scholar
  7. Casamenti, F., Bracco, L., Bartolini, L., and Pepeu, G., 1985, Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei, Brain Res. 338: 45–52.CrossRefGoogle Scholar
  8. Ceccarelli, B., Aporti, F., and Finesso, M., 1975, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, Adv. Exp. Med. Biol. 71: 275–293.Google Scholar
  9. Commissiong, J. W., and Toffano, G., 1986, The effect of GM1 ganglioside on coerulospinal noradrenergic, adult neurons and on fetal monoaminergic neurons transplanted into the transected spinal cord of the adult rat, Brain Res. 380: 205–215.CrossRefGoogle Scholar
  10. Cuello, A. C., Stephens, P. H., Tagari, P. C., Sofroniew, M. V., and Pearson, R. C. A., 1986, Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1, Brain Res. 376: 373–377.CrossRefGoogle Scholar
  11. Doherty, P., Dickson, J. G., Flanigan, T. P., and Walsh, F. S., 1985, Ganglioside GM1 does not initiate, but enhance neurite regeneration of nerve growth factor-dependent sensory neurons, J. Neurochem. 44: 1259–1265.CrossRefGoogle Scholar
  12. Dunbar, G. L., Butler, W. M., Fass, B., and Stein, D. G., 1987, Behavioral and neurochemical alterations induced by exogenous ganglioside in brain damaged animals: Problems and perspec¬tives, in: Gangliosides and Neuronal Plasticity ( G. Tettamanti, R. W. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), Springer Verlag, Berlin, pp. 365–380.Google Scholar
  13. Fass, B., and Ramirez, J. J., 1984, Effects of ganglioside treatment on lesion-induced behav¬ioral impairments and sprouting in the CNS, J. Neurosci. Res. 12: 445–458.CrossRefGoogle Scholar
  14. Finger, S., and Stein, D. G., 1982, Brain Damage and Recovery, Academic Press, New York.Google Scholar
  15. Freed, W. J., 1985, GM1 ganglioside does not stimulate reinnervation of the striatum by substantia nigra grafts, Brain Res. 14: 91–95.Google Scholar
  16. Fujito, Y., Watanabe, S., Kobayashi, H., and Tsukahara, N., 1984, Lesion-induced sprouting in the red nucleus at the early developmental stage, in: Early Brain Damage, Volume 2 ( S. Finger and C. R. Almli, eds.), Academic Press, New York, pp. 35–47.Google Scholar
  17. Fujito, Y., Watanabe, S., Kobayashi, H., and Tsukahara, N., 1985, Promotion of sprouting and synaptogenesis of cerebrofugal fibers by ganglioside application in the red nucleus, Neurosci. Res. 2: 407–411.Google Scholar
  18. Fusco, M., Dona, M., Tessari, F., Hallmann, H., Jonsson, G., and Gorio, A., 1986, GM1 ganglioside counteracts selective neurotoxin-induced lesion of developing serotonin neurons in rat spinal cord, J. Neurosci. Res. 15: 467–479.CrossRefGoogle Scholar
  19. Fuxe, K., Agnati, L. F., Benfenati, F., Zini, I., Gavioli, G., and Toffano, G., New evidence for the morphofunctional recovery of striatal function by ganglioside GM1 treatment following a partial hemitransection of rats. Studies on dopamine neurons and protein phosphorylation, in: Gangliosides and Neuronal Plasticity (G. Tettamanti, R. Ledeen, K. Sandhoff, Y. Nagai, and G. Toffano, eds.), Springer Verlag, Berlin, pp. 347–364.Google Scholar
  20. Gradkowska, M., Skup, M., Kiedrowski, L., Calzolari, S., and Oderfeld-Nowak, B., 1986, The effect of GM1 ganglioside on cholinergic and serotoninergic systems in the rat hippocampus following partial denervation is dependent on the degree of fiber degeneration, Brain Res. 375: 417–422.CrossRefGoogle Scholar
  21. Hadjiconstantinou, M., and Neff, N. H., 1986, Treatment with GM1 ganglioside increases rat spinal cord indole content, Brain Res. 366: 343–345.CrossRefGoogle Scholar
  22. Hakomori, S., 1984, Ganglioside receptors: a brief overview and introductory remarks, in: Ganglioside Structure, Function, and Biomedical Potential ( R. W. Ledeen, R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), Plenum Press, New York, pp. 333–339.Google Scholar
  23. Hefti, F., Hartikka, J., and Frick, W., 1985, Gangliosides alter morphology and growth of astrocytes and increase the activity of choline acetyltransferase in cultures of dissociated septal cells, J. Neurosci. 5 (8): 2086–2094.Google Scholar
  24. Jonsson, G., Gorio, A., Hallman, H., Janigro, D., Kojima, H., Luthman, J., and Zanoni, R., 1984, Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selective neurotoxins, J. Neurosci. Res. 12: 459–476.CrossRefGoogle Scholar
  25. Jope, R. S., Baker, H. J., and Conner, D. J., 1986, Increased acetylcholine synthesis and release in brains of cats with GM1 gangliosidosis, J. Neurochem. 46: 1567–1572.CrossRefGoogle Scholar
  26. Kalia, M., and DiPalma, J. R., 1982, Ganglioside-induced acceleration of axonal transport following nerve crush injury in the rat, Neurosci. Lett. 34: 1–5.Google Scholar
  27. Karpiak, S. E., 1983, Ganglioside treatment improves recovery of alternation behaviour follow¬ing unilateral entorhinal cortex lesions, Exp. Neurol. 81: 330–339.Google Scholar
  28. Kojima, H., Gorio, A., Janigro, D., and Jonsson, G., 1984, GM1 ganglioside enhances re- growth of noradrenaline nerve terminals in rat cerebral cortex lesioned by 6-hydroxydopamine, Neuroscience 13 (4): 1011–1022.CrossRefGoogle Scholar
  29. Oderfeld-Nowak, B., Skup, M., Ulas, J., Jezierska, M., Gradkowska, M., and Zaremba, M., 1984, Effect of GM1 ganglioside treatment on postlesion responses of cholinergic enzymes in rat hippocampus after various partial deafferentations, J. Neurosci. Res. 12: 409–420.CrossRefGoogle Scholar
  30. Oderfeld-Nowak, B., Wojcik, M., Ulas, J., and Potempska, A., 1981, Effects of chronic ganglioside treatment on recovery process in hippocampus after brain lesions in rats, in: Gang-liosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rap-port and A. Gorio, eds.), Raven Press, New York, pp. 197–209.Google Scholar
  31. Pedata, F., Giovannelli, L., and Pepeu, G., 1984, GMJ ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis, J. Neurosci. Res. 12: 421–428.CrossRefGoogle Scholar
  32. Pedata, F., LoConte, G., Sorbi, S., Marconini-Pepeu, I., and Pepeu, G., 1982, Changes in high affinity choline uptake in rat cortex following lesions of the magnocellular forebrain nuclei, Brain Res. 233: 359–367.CrossRefGoogle Scholar
  33. Purpura, D. P., and Baker, H. J., 1977, Neurite induction in mature cortical neurons in feline GM1-ganglioside storage disease, Nature 266: 553–554.CrossRefGoogle Scholar
  34. Raiteri, M., Versace, P., and Marchi, M., 1985, GM1 monosialoganglioside inner ester induces early recovery of striatal dopamine uptake in rats with unilateral nigrostriatal lesion, Eur. J. Pharmacol. 118: 347–350.CrossRefGoogle Scholar
  35. Ramirez, J. J., Fass, B., Kilfoil, T., Henschel, B., Grones, W., and Karpiak, S. E., 1987, Ganglioside-induced enhancement of behavioral recovery after bilateral lesions of the entorhinal cortex, Brain Res. 414: 85–90.CrossRefGoogle Scholar
  36. Ramirez, J. J. and Stein, D. G., Sparing and recovery of spatial alternation performance after entorhinal cortex lesions in rats, Behav. Brain Res. 13:53–61.Google Scholar
  37. Ramon y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System (R. M. May, trans.), Oxford University Press, London.Google Scholar
  38. Sabel, B. A., DelMastro, R., Dunbar, G. L., and Stein, D. G., 1987, Reduction of anterograde degeneration in brain damaged rats by GM1 gangliosides, Neurosci. Lett. 77: 360–366.Google Scholar
  39. Sabel, B. A., Dunbar, G. L., Butler, W. M., and Stein, D. G., 1985, GM1 gangliosides stimulate neuronal reorganization and reduce rotational asymmetry after hemitransections of the nigro-striatal pathway, Exp. Brain Res. 60: 27–37.Google Scholar
  40. Sabel, B. A., Dunbar, G. L., Fass, B., and Stein, D. G., 1985, Gangliosides, neuroplasticity, and behavioral recovery after brain damage, in: Brain Plasticity, Learning, and Memory ( B. E. Will, P. Schmitt, and J. C. Dalrymple-Alford, eds.), Plenum Press, New York, pp. 481–493.Google Scholar
  41. Sabel, B. A., Dunbar, G. L., and Stein, D. G., 1984, Gangliosides minimize behavioral deficits and enhance structural repair after brain injury, J. Neurosci. Res. 12: 429–443.CrossRefGoogle Scholar
  42. Sabel, B. A., and Schneider, G. E., 1986, GM1 ganglioside injections increase abnormal retinal projections in left tectum following early right tectal lesions, Soc. Neurosci. Abstr. 139: 26.Google Scholar
  43. Sabel, B. A., and Schneider, G. E., 1986, GM1 ganglioside injections increase abnormal retinal projections in left tectum following early right tectal lesions, Soc. Neurosci. Abstr. 139: 26.Google Scholar
  44. Sabel, B. A., Slavin, M. D., and Stein, D. G., 1984, GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage, Science 225: 340–342.CrossRefGoogle Scholar
  45. Sabel, B. A., and Stein, D. G., 1986, Pharmacological treatment of central nervous system injury, Nature 323: 493.CrossRefGoogle Scholar
  46. So, K.-F., and Schneider, G. E., 1978, Abnormal recrossing retinotectal projections after early lesions in Syrian hamsters: Age-related effects, Brain Res. 147: 277–295.CrossRefGoogle Scholar
  47. Tettamanti, G., Venerando, B., Roberti, S., Chigorno, V., Sonnino, S., Ghidoni, R., Orlando, P., and Massari, P., 1981, The fate of exogenously administered brain gangliosides, in: Gang-liosides in Neurological and Neuromuscular Function, Development and Repair ( M. M. Rap-port and A. Gorio, eds.), Raven Press, New York, pp. 225–270.Google Scholar
  48. Toffano, G., Agnati, L. F., Fuxe, K., Aldinio, C., Consolazione, A., Valenti, G., and Savoini, G., 1984, Effect of ganglioside treatment on the recovery of dopaminergic nigro-striatal neurons after different types of lesion, Acta Physiol. Scand. 122: 313–321.CrossRefGoogle Scholar
  49. Toffano, G., Savoini, G., Aporti, F., Calzolari, S., Consolazione, A., Maura, G., Marchi, M., Raiteri, M., and Agnati, L. F., 1984, The functional recovery of damaged brain: The effect of GM1 monosialoganglioside, J. Neurosci. Res. 12: 397–408.CrossRefGoogle Scholar
  50. Toffano, G., Savoini, G., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F., 1983, GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system, Brain Res. 261: 163–166.CrossRefGoogle Scholar
  51. Toffano, G., Savoini, G., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F., 1984, Chronic GM1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat, Brain Res. 296: 233–239.CrossRefGoogle Scholar
  52. Wieraszko, A., and Seifert, W., 1985, The role of monosialoganglioside GMI in the synaptic plasticity: In vitro study on rat hippocampal slices, Brain Res. 345: 159–164.CrossRefGoogle Scholar
  53. Willinger, M., and Schachner, M., 1980, GM1 ganglioside as a marker for neuronal differentia¬tion in mouse cerebellum, Dev. Biol. 74: 101–117.Google Scholar
  54. Wojcik, M., Ulas, B., and Oderfeld-Nowak, B., 1982, The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions, Neuroscience 7: 495–499.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1988

Authors and Affiliations

  • Bernhard A. Sabel
    • 1
  1. 1.Institute of Medical PsychologyUniversity of Munich, School of MedicineMunich 2Federal Republic of Germany

Personalised recommendations