Nerve Growth Factor

Effects on CNS Neurons and on Behavioral Recovery from Brain Damage
  • Bruno Will
  • Viviane Pallage
  • Guy Toniolo
  • Franz Hefti


Nerve growth factor (NGF) is a well-characterized protein that acts as a neurotrophic factor for catecholaminergic neurons of the peripheral sympathetic nervous system and for a subpopulation of peripheral sensory neurons. In the central nervous system, catecholaminergic neurons are not affected, but evidence obtained in recent years indicates that NGF acts as a neurotrophic factor for cholinergic neurons of the basal forebrain innervating cortex and hippocampus. Nerve growth factor affects survival, fiber growth, and expression of transmitter-specific enzymes by these cholinergic neurons. Intracerebral administration of NGF has been found in several studies to modify the behavioral recovery of animals from experimentally induced brain damage. Such effects were observed after lesions in target areas and areas of origin of forebrain cholinergic neurons (septum, fimbria-fornix, hippocampus, cortex) and also after lesions in hypothalamus, striatum, and nucleus accumbens, i.e., in areas not innervated by forebrain cholinergic neurons. The mechanisms mediating the behavioral effects of NGF and the possible involvement of central cholinergic and peripheral sympathetic neurons are discussed.


Nerve Growth Factor Cholinergic Neuron Basal Forebrain Nucleus Basalis Septal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, B. E. C., and Walter, S. J., 1977, The effects of post-ganglionic axotomy and nerve growth factor on superior cervical ganglia of developing mice, J. Neurocytol. 6: 287–297.CrossRefGoogle Scholar
  2. Berger, B. D., Wise, C. D., and Stein, L., 1973, Nerve growth factor: Enhanced recovery of feeding after hypothalamic damage, Science 185: 506–508.Google Scholar
  3. Biedermann, G. B., 1975, The search for the chemistry of memory; recent trends and the logic of investigation in the role of cholinergic and adrenergic transmitters, in: Progress in Neu-robiology, Volume 2 ( G. A. Kerkut and J. W. Phyllis, eds.), Pergamon Press, New York, pp. 49–123.Google Scholar
  4. Bjorklund, A., and Stenevi, U., 1972, Nerve growth factor: Stimulation of regenerative growth of central noradrenergic neurons, Science 175: 1251–1253.CrossRefGoogle Scholar
  5. Bjorklund, A., and Stenevi, U., 1977, Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia: I. Axonal regeneration along the hippocampal fimbria, Brain Res. 138: 259–270.CrossRefGoogle Scholar
  6. Crutcher, K. A., Brothers, L., and Davis, J. N., 1979, Sprouting of sympathetic nerves in the absence of afferent input, Exp. Neurol. 66: 778–783.Google Scholar
  7. Crutcher, K. A., Brothers, L., and Davis, J. N., 1981, Sympathetic noradrenergic sprouting in response to central cholinergic denervation: A histochemical study of neuronal sprouting in the rat hippocampal formation, Brain Res. 210: 115–128.CrossRefGoogle Scholar
  8. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.CrossRefGoogle Scholar
  9. Dribin, L. E., and Barrett, J. N., 1985, Conditioned medium enhances neuritic outgrowth from rat spinal cord explants, Dev. Biol. 74: 184–195.Google Scholar
  10. Eclancher, F., Ramirez, J. J., and Stein, D. G., 1985, Neonatal brain damage and recovery: Intraventricular injection of NGF at time of injury alters performance of active avoidance, Dev. Brain Res. 19: 227–235.CrossRefGoogle Scholar
  11. Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K., and Bartus, R. T., 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat, Pharmacol. Biochem. Behav. 18: 973–981.Google Scholar
  12. Francke, U., DeMartinville, B., Coussens, L., and Ullrich, A., 1983, The human gene for the beta-subunit of nerve growth factor is located on the proximal short arm of chromosome 1, Science 222: 1248–1250.CrossRefGoogle Scholar
  13. Gahwiller, B. H., and Hefti, F., 1987, Nerve growth factor is involved in establishment of septo-hippocampal cholinergic projection, Neurosci. Lett. 75: 6.Google Scholar
  14. Gnahn, H., Hefti, F., Heuman, R., Schwab, M. E., and Thoenen, H., 1983, NGF-mediated increase in choline acetyltransferase (ChAT) in the neonatal rat forebrain; evidence for a physiological role of NGF in the brain? Dev. Brain Res. 9: 45–52.CrossRefGoogle Scholar
  15. Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor. Biochemistry, synthesis and mechanism of action, Annu. Rev. Neurosci. 3: 353–402.CrossRefGoogle Scholar
  16. Hamburger, V., Brunsobechtold, J. K., and Yip, J. W., 1981, Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor, J. Neurosci. 1:60- 71.Google Scholar
  17. Harountunian, V., Barnes, E., and Davis, K. L., 1985, Cholinergic modulation of memory, Psychopharmacology 87: 266–271.CrossRefGoogle Scholar
  18. Harper, G. P., and Thoenen, H., 1980, Nerve growth factor: Biological significance, measure-ment, and distribution, J. Neurochem. 34: 5–16.CrossRefGoogle Scholar
  19. Harper, G. P., Barde, Y. A., Edgar, D., Ganten, D., Hefti, F., Heuman, R., Naujoks, K. W., Rohrer, H., Turner, J. E., and Thoenen, H., 1983, Biological and immunological properties of nerve growth factor from bovine seminal plasma: Comparison with the properties of mouse nerve growth factor, Neuroscience 8: 375–387.CrossRefGoogle Scholar
  20. Hart, T., Chaimas, N. B., Moore, R. Y., and Stein, D. G., 1978, Effects of nerve growth factor on behavioral recovery following caudate nucleus lesions in rats, Brain Res. Bull. 3: 245–251.Google Scholar
  21. Hefti, F., 1986, Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections, J. Neurosci. 6: 2155–2162.Google Scholar
  22. Hefti, F., Dravid, A., and Hartikka, J., 1984, Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions, Brain Res. 293: 305–311.CrossRefGoogle Scholar
  23. Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R., Schwab, M., and Thoenen, H., 1985, Nerve growth factor (NGF) induces choline acetyltransferase but fails to affect survival of fiber outgrowth of cholinergic neurons in cultures of dissociated septal neurons of fetal rat brain, Neuroscience 14: 55–68.CrossRefGoogle Scholar
  24. Hefti, F., Hartika, J., Salvatierra, A., Weiner, W. J., and Mash, D. C., 1986, Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain, Neurosci. Lett. 69: 37–41.Google Scholar
  25. Hefti, F., and Weiner, W. J., 1986, Nerve growth factor and Alzheimer’s disease, Ann. Neurol. 20: 275–281.CrossRefGoogle Scholar
  26. Hendry, I. A., 1975, The response of adrenergic neurons to axotomy and nerve growth factor, Brain Res. 94: 87–97.CrossRefGoogle Scholar
  27. Hepler, D. G., Olton, D. S., Wenk, G. L., and Coyle, J. T., 1985, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impair-ments, J. Neurosci. 5: 866–873.Google Scholar
  28. Hepler, D. G., Wenk, G. L., Cribbs, B. L., Olton, D. S., and Coyle, J. T., 1985, Memory impairments following basal forebrain lesions, Brain Res. 346: 8–14.CrossRefGoogle Scholar
  29. Heumann, R., Korsching, S., and Thoenen, H., 1985, Regulation of nerve growth factor (NGF) specific messenger RNA in the peripheral and the central nervous system, Soc. Neurosci. Abstr. 11: 939.Google Scholar
  30. Honegger, P., 1983, Nerve growth factor-sensitive brain neurons in culture, Monogr. Neurol. Sci. 9: 36–42.Google Scholar
  31. Honegger, P., and Lenoir, D., 1982, Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures, Dev. Brain Res. 3: 229–238.CrossRefGoogle Scholar
  32. Jaffard, R., Galey, D., Micheau, J., and Durkin, T. P., 1985, The cholinergic septo-hippocam- pal pathway, learning and memory, in: Brain Plasticity, Learning artd Memory ( B. Will, P. Schmitt, and J. Dairymple-Alford, eds.), Plenum Press, New York, pp. 167–181.Google Scholar
  33. Johnson, M. V., Buchanan, K., Rutkowski, J. L., and Mobley, W. C., 1985, Nerve growth factor effects on developing central cholinergic neurons: Temporal response characteristics in septum, hippocampus and striatum, Soc. Neurosci. Abstr. 11: 661.Google Scholar
  34. Kimble, P. D., Bremiller, R., and Perez-Polo, J. R., 1979, Nerve growth factor applications fail to alter behavior of hippocampal-lesioned rats, Physiol. Behav. 23: 653–657.Google Scholar
  35. Korsching, B., Auburger, G., Heumann, R., Scott, J., and Thoenen, H., 1985, Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation, EMBO J. 4: 1389–1393.Google Scholar
  36. Levi-Montalcini, R., 1966, The nerve growth factor: Its mode of action on sensory and sym¬pathetic nerve cells, Harvey Lect. 60: 217–259.Google Scholar
  37. Levi-Montalcini, R., and Angeletti, P. U., 1966, Immunosympathectomy, Pharmacol. Rev. 18: 619–628.Google Scholar
  38. Levi-Montalcini, R., and Booker, B., 1960, Excessive growth of sympathetic ganglia evoked by a protein isolated from mouse salivary gland, Proc. Natl. Acad. Sci. U.S.A. 46: 373–384.CrossRefGoogle Scholar
  39. Levi-Montalcini, R., and Booker, B., 1960, Destruction of the sympathetic ganglia in mammals by an antiserum to the nerve-growth promoting factor, Proc. Natl. Acad. Sci. U.S.A. 46:384- 391.Google Scholar
  40. Levi-Montalcini, R., and Hamburger, V., 1951, Selective growth-stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo, J. Exp. Zool. 116: 321–362.CrossRefGoogle Scholar
  41. Levi-Montalcini, R., and Hamburger, V., 1953, A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo, J. Exp. Zool. 123: 233–278.CrossRefGoogle Scholar
  42. Lewis, M. E., Brown, R. M., Brownstein, M. J., Hart, T., and Stein, D. A., 1979, NGF: Effects on D-amphetamine induced activity and brain monoamines, Brain Res. 176: 297–310.CrossRefGoogle Scholar
  43. Loy, R., Milner, T. A., and Moore, R. Y., 1980, Sprouting of sympathetic axons in the hippocampal formation: Conditions necessary to elicit ingrowth, Exp. Neurol. 67: 399–411.Google Scholar
  44. Loy, R., and Moore, R. Y., 1977, Anomalous innervation of the hippocampal formation by peripheral sympathetic axons following mechanical injury, Exp. Neurol. 57: 645–650.Google Scholar
  45. Martinez, H. J., Dreyfus, C. F., Jonakait, D. G., and Black, I. B., 1985, Nerve growth factor promotes cholinergic development in brain striatal cultures, Proc. Natl. Acad. Sci. U.S.A. 82: 777–7781.Google Scholar
  46. Matthies, H., 1974, The biochemical basis of learning and memory, Life Sci. 15: 2017–2031.CrossRefGoogle Scholar
  47. Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levey, A. I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chi—Ch6), Neuro- science 10: 1185–1201.Google Scholar
  48. Mobley, W. C., Rutowski, J. L., Tennekoon, G. I., Buchanan, K., and Johnston, M. V., 1985, Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor, Science 229: 284–286.CrossRefGoogle Scholar
  49. Murphy, R. A., Landis, S. C., Bernanke, J., and Siminoski, K., 1986, Absence of the alpha and gamma subunits of 7S nerve growth factor in denervated rodent iris: Immunocytochemical studies, Dev. Biol. 114: 369–380.Google Scholar
  50. Nja, A., and Purves, D., 1978, Effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea pig, J. Physiol. (Lond.) 277: 53–75.Google Scholar
  51. Otten, U., Weskamp, G., Schlumpf, M., Lichtensteiger, W., and Mobley, W. C., 1985, Effects of antibodies against nerve growth factor on developing cholinergic forebrain neurons in rats, Soc. Neurosci. Abstr. 11: 661.Google Scholar
  52. Pallage, V., Toniolo, G., Will, B., and Hefti, F., 1986. Long-term effects of nerve growth factor and neural transplants on behavior of rats with medial septal lesions, Brain Res. 386:197- 208.Google Scholar
  53. Pepeu, G., 1983, Brain acetylcholine: An inventory of our knowledge on the 50th anniversary of its discovery, Trends Pharmacol. Sci. 4: 416–418.Google Scholar
  54. Riopelle, R. J., Richardson, P. M., and Verge, V. M. K., 1985, Receptors for nerve growth factor in the rat central nervous system, Soc. Neurosci. Abstr. 11: 1056.Google Scholar
  55. Russell, R. W., 1982, Cholinergic system in behavior: The search for mechanisms of action, Annu. Rev. Pharmacol. 22: 435–463.Google Scholar
  56. Sabel, B. A., Kardon, G. B., and Stein, D. G., 1983, Behavioral effects of intracerebral injections of renin and captopril in intact and brain-damaged rats, Brain Res. Bull. 11: 637–642.Google Scholar
  57. Salamone, J. D., Beart, P. M., Alpert, J. E., and Iversen, S. D., 1984, Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats, Behav. Brain Res. 13: 63–70.Google Scholar
  58. Schwab, M., Otten, U., Agid, Y., and Thoenen, H., 1979, Nerve growth factor (NGF) in the rat CNS: Absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra, Brain Res. 168: 473–483.CrossRefGoogle Scholar
  59. Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G. I., and Tutter, W. J., 1983, Isolation and nucleotide sequence of cDNA encoding the precursor of mouse nerve growth factor, Nature 302: 538–540.CrossRefGoogle Scholar
  60. Shelton, D. L., and Reichardt, L. F., 1984, Expression of the nerve growth factor gene correlates with the density of sympathetic innervation in effector organs, Proc. Natl. Acad. Sci. U.S.A. 81: 7951–7955.CrossRefGoogle Scholar
  61. Shelton, D. L., and Reichardt, L. F., 1986, Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons, Proc. Natl. Acad. Sci. U.S.A. 83: 2714–2718.CrossRefGoogle Scholar
  62. Stein, D. G., Blake, C. A., and Weiner, H. W., 1980, Nerve growth factor disrupts metabolism and behavioral performance of intact rats but does not affect recovery from hypothalamic lesions, Brain Res. 190: 278–284.CrossRefGoogle Scholar
  63. Stein, D. G., and Will, B. E., 1983, Nerve growth factor produces a temporary facilitation of recovery from entorhinal cortex lesions, Brain Res. 261: 127–131.CrossRefGoogle Scholar
  64. Stenevi, U., and Bjorklund, A., 1978, Growth of vascular sympathetic axons into the hippocam¬pus after lesions of the septo-hippocampal pathway: A pitfall in brain lesions studies, Neurosci. Lett. 7: 219–224.Google Scholar
  65. Taniuchi, M., and Johnson, E. M., 1985, Characterization of the binding properties and retro-grade axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor, J. Cell. Biol. 101: 1100–1106.CrossRefGoogle Scholar
  66. Taniuchi, M., Schweizer, J. B., and Johnson, E. M., 1986, Nerve growth factor receptor molecules in rat brain, Proc. Natl. Acad. Sci. U.S.A. 83: 1950–1954.CrossRefGoogle Scholar
  67. Tarpy, R. M., Augenbraun, C. B., and Holman, W. L., 1975, Hypothalamic self-stimulation in rats following immunosympathectomy or central nerve growth factor antiserum injection, Comp. Physiol. Psychol. 88: 528–533.Google Scholar
  68. Thoenen, H., and Barde, Y. A., 1980, Physiology of nerve growth factor, Physiol. Rev. 60: 1284–1335.Google Scholar
  69. Thoenen, H., and Edgar, D., 1985, Neurotrophic factors, Science 229: 238–242.CrossRefGoogle Scholar
  70. Toniolo, G., Dunnett, S. B., Hefti, F., and Will, B., 1985, Acetylcholine-rich transplants in the hippocampus: Influence of intrinsic growth factors and application of nerve growth factor on choline acetyltransferase activity, Brain Res. 345: 141–146.CrossRefGoogle Scholar
  71. Ullrich, A., Gray, A., Berman, C., and Dull, T. J., 1983, Human beta-nerve growth factor gene sequence highly homologous to that of mouse, Nature 303: 821–825.CrossRefGoogle Scholar
  72. Varon, S., and Manthorpe, M., 1985, In vitro models for neuroplasticity and repair, in: Central Nervous System Plasticity and Repair ( A. Bignami, F. E. Bloom, C. L. Bolis, and A. Adeloye, eds.), Raven Press, New York, pp. 13–23.Google Scholar
  73. Weskamp, G., Lorez, H. P., and Otten, U., 1985, Development of a highly sensitive immu-noassay for measurement of endogenous NGF in peripheral and central nervous system of the adult rat, Soc. Neurosci. Abstr. 11: 940.Google Scholar
  74. Whittemore, S. R., Ebendal, T., Lakfors, L., Olson, L., Seiger, A., Stromberg, I., and Persson, H., 1985, Developmental, regional and post-lesion expression of nerve growth factor (NGF) and NGF mRNA in rat brain, Soc. Neurosci. Abstr. 11: 660.Google Scholar
  75. Will, B., and Hefti, F., 1985, Behavioural and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions, Behav. Brain Res. 17: 17–24.CrossRefGoogle Scholar
  76. Will, B. E., Schmitt, P., and Dalrymple-Alford, J. (eds.), 1985, Brain Plasticity, Learning and Memory, Plenum Press, New York.Google Scholar
  77. Williams, L. R., Varon, S., Petersen, J. M., Victoreen K., Fischer, W., Bjorklund, A., and Gage, F. H., 1986, Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection, Proc. Natl. Acad. Sci. U.S.A. 83: 9231–9235.CrossRefGoogle Scholar
  78. Yip, H. K., and Grafstein, B., 1982, Effect of nerve growth factor on regeneration of goldfish optic axons, Brain Res. 238: 329–339.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1988

Authors and Affiliations

  • Bruno Will
    • 1
  • Viviane Pallage
    • 1
  • Guy Toniolo
    • 1
  • Franz Hefti
    • 2
  1. 1.Department of Neurophysiology and Biology of BehaviorCenter of Neurochemistry, C.N.R.S.StrasbourgFrance
  2. 2.Department of NeurologyUniversity of Miami Scholl of MedicineMiamiUSA

Personalised recommendations