Skip to main content

Modulation of Synaptically Evoked Neuronal Calcium Fluxes by Adenosine

  • Chapter

Abstract

The functioning of the brain is characterized by a surprisingly high degree of flexibility. This phenomenon, which is usually described as neuronal plasticity, has not only been observed during development and repair, but also seems to be an essential criterion of signal processing. The flow of activity generated in a neuronal circuit as the result of transmitter action can be modified by neuromodulators which interfere with synaptic transmission and change the pattern of evoked neuronal firing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt Laursen, A., 1980, Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid, J. Physiol. (London) 305:279–296.

    CAS  Google Scholar 

  • Barr, E., Daniell, L. C., and Leslie, S. W., 1985, Synaptosomal calcium uptake unaltered by adenosine and 2-chloroadenosine, Biochem. Pharmacol. 34:713–715.

    Article  PubMed  CAS  Google Scholar 

  • Berne, R. M., Rubio, R., and Curnish, R. R., 1974, Release of adenosine from ischaemic brain, Circ. Res. 35:262–272.

    CAS  Google Scholar 

  • Boll, W., and Lux, H. D., 1985, Action of organic antagonists on neuronal calcium currents, Neurosci. Lett. 56:336–339.

    Article  Google Scholar 

  • Bruns, R., Daly, J., and Synder, S., 1980, Adenosine receptors in brain membranes: Binding of N6-cyclohexyl (3H)adenosine and l,3-diethyl-8-(3H)phenylxanthine, Proc. Natl. Acad. Sci. USA 77:5547–5551.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, E., and Lux, H. D., 1984, A voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones, Nature 310:501–505.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A. C., Forda, S. R., and Scott, R. H., 1986, The adenosine analogue 2-chloroadenosine inhibits Ba currents in dorsal root ganglion neurones in culture, J. Physiol. (London) 373:47–61.

    CAS  Google Scholar 

  • Dunwiddie, T., and Fredholm, B., 1984, Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus differ from receptors mediating cyclic AMP accumulation, Naunyn-Schmiedeberg Arch. Pharmacol. 326:294–301.

    CAS  Google Scholar 

  • Haas, H. L., Wieser, H. G., and Yasargil, M. G., 1983, 4-Aminopyridine and fiber potentials in rat and human hippocampal slices, Experientia 39:114–115.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, J. V., and Scholfield, C. N., 1984, Somatically recorded Ca currents in guinea pig hippocampal and olfactory cortex neurones are resistant to adenosine action, Neurosci. Lett. 50:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., and Jones, P., 1987, Reduction of stimulus-evoked post-, but not presynaptic calcium influx in rat hippocampus by organic calcium antagonists, Br. J. Pharmacol. 87:5P.

    Google Scholar 

  • Heinemann, U., Lux, H. D., and Gutnick, M. J., 1977, Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cat, Exp. Brain Res. 27:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Henon, B. K., and McAffee, D. A., 1979, Cyclic AMP and other adenine nucleotides inhibit Ca-dependent potentials in sympathetic postganglionic neurons, Soc. Neurosci. Abstr. 5:559.

    Google Scholar 

  • Konnerth, A., and Heinemann, U., 1983, Effects of GABA on presumed presynaptic Ca entry in hippocampal slices, Brain Res. 270:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg, G. W., Barron, K., and Schubert, P., 1978, Cytochemical localization of 5′-nucleotidase in glial plasma membranes, Brain Res. 158:247–257.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, E., and Bleck, V., 1979, Uptake and release of adenosine by cultured astrocytoma cells, J. Neurochem. 33:365–367.

    Article  PubMed  CAS  Google Scholar 

  • Londos, C, Cooper, D. M. F., and Wolff, J., 1980, Subclasses of external adenosine receptors, Proc. Natl. Acad. Sci. USA 77:2551–2554.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, R. L., Skerritt, J. H., and Werz, M. A., 1986, Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture, J. Physiol. (London) 370:75–90.

    CAS  Google Scholar 

  • Proctor, W. R., and Dunwiddie, T. V., 1983, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Lett. 35:197–201.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M., Lee, K. S., and Schubert, P., 1982, An A1-adenosine receptor, characterized by 3H-cyclohex-yladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation, Neurosci. Lett. 28:275–279.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M., Alexander, S. P., Erfurth, A., and Lee, K., 1986, Biochemical and autoradiographic approaches to the characterization of adenosine receptors in brain, in: Topics and Perspectives in Adenosine Research (E. Gerlach and B. Becker, eds.), Springer-Verlag, Berlin, pp. 49–58.

    Google Scholar 

  • Ribeiro, J. A., Sa-Almeida, A. M., and Namorado, J. M., 1979, Adenosine and adenosine triphosphate decrease 45 Ca uptake by synaptosomes stimulated by potassium, Biochem. Pharmacol. 28:1297–1300.

    Article  PubMed  CAS  Google Scholar 

  • Riker, W. K., Matsumoto, M., and Takashima, K., 1985, Synaptic facilitation by 3-aminopyridine and its antagonism by verapamil and diltiazem, J. Pharmacol. Exp. Ther. 235:431–435.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1982, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharmacol. 79:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Siggins, G. R., and Schubert, P., 1981, Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Lett. 23:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., Heinemann, U., 1987, Adenosine antagonists combined with 4-aminopyridine can recover synaptic transmission in low Ca media, (submitted).

    Google Scholar 

  • Schubert, P., and Kreutzberg, G. W., 1987, Pre- versus postsynaptic effects of adenosine on neuronal calcium fluxes, in: Topics and Perspectives in Adenosine Research (E. Gerlach and B. Becker, eds.), Springer Verlag, Berlin, pp. 521–532.

    Google Scholar 

  • Schubert, P., and Kreutzberg, G. W., 1975, Dendritic and axonal transport of nucleoside derivatives in single motoneurons and release from dendrites, Brain Res. 90:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., and Lee, K. S., 1986, Non-synaptic modulation of repetitive firing by adenosine is antagonized by 4- aminopyridine in a rat hippocampal slice, Neurosci. Lett. 67:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., and Mitzdorf, U., 1979, Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices, Brain Res. 172:186–190.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., Heinemann, and Kolb, R., 1986, Differential effect of adenosine on pre- and postsynaptic calcium fluxes, Brain Res. 376:382–386.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., Lee, K., West, M., Deadwhyler, S., and Lynch, G., 1976, Stimulation dependent release of 3H-adenosine derivatives from central axon terminals to target neurones, Nature 260:541–542.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. P., and Dudek, F. E., 1982, Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science 218:810–812.

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff, W., Schubert, P., and Kreutzberg, G. W., 1987, Synaptic and extrasynaptic localization of adenosine binding sites in the rat hippocampus, Neuroscience 21:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Trussel, L. O., and Meyer, B. J., 1985, Adenosine-activated potassium conductance in cultured striatal neurons, Proc. Natl. Acad. Sci. USA 82:4857–4861.

    Article  Google Scholar 

  • Van Calker, D., Mueller, M., and Hamprecht, B., 1979, Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells, J. Neurochem. 33:999–1000.

    Article  PubMed  Google Scholar 

  • Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonists inhibit K-evoked Ca uptake by rat brain cortical synaptosomes, J. Neurochem. 39:700–708.

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom, T., Vernet, L., Ungerstedt, U., Tossmann, U., Jonzon, B., and Fredholm, B. B., 1984, Purine levels in the intact rat brain: Studies with an implanted perfused hollow fibre, Neurosci. Lett. 29:111–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Schubert, P. (1988). Modulation of Synaptically Evoked Neuronal Calcium Fluxes by Adenosine. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics