Advertisement

Cortical Monoamines and Injured Brain

  • Hanna M. Pappius

Abstract

It is well established that brain injury which causes gross damage to vascular elements results in opening of the blood-brain barrier and an extravasation of fluid, giving rise to vasogenic edema (Katzman and Pappius, 1973). The edema has been generally accepted as the underlying cause of functional disturbances in conditions in which it occurs, although this assumption has not been validated and has been questioned (Pappius and McCann, 1969; Sutton et al., 1980; Pappius and Wolfe, 1984). On the other hand, brain injury is associated with many other events all of which can be envisaged as leading to disturbances of neuronal function independently of the develop-ment of cerebral edema (Pappius and Wolfe, 1984). These include release of arachidonic acid from membrane phospholipids and formation of prostaglandins and thromboxanes (Wolfe, 1982), release of neurotransmitters (Fenske et al., 1976; Bareggi et al., 1975; Vecht et al., 1975) and possibly the generation of free radicals (Demopoulos et al., 1972). In the context of this sym-posium, effects of injury on neurotransmitter systems are of particular interest.

Keywords

Biogenic Amine Glucose Utilization Vasogenic Edema Injured Brain Functional Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bareggi, S. R., Porta, M., Selenati, A., Assael, B. M., Calderini, G., Collice, M., Rossandra, M., and Morselli, P. L., 1975, Homovanillic acid and 5-hydroxyindoleacetic acid in the CSF of patients after severe head injury, Eur. Neurol. 13:528–544.PubMedCrossRefGoogle Scholar
  2. Beaudet, A., and Descarries, L., 1976, Quantitative data on serotonin nerve terminals in adult rat neocortex, Brain Res. 111:301–309.PubMedCrossRefGoogle Scholar
  3. Beaudet, A., and Descarries, L., 1978, The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic axon terminals, Neuroscience 3:851–860.PubMedCrossRefGoogle Scholar
  4. Bloom, F. E., 1981, Chemical signaling and cortical circuitry: Integrative aspects, in: The Organization of the Cerebral Cortex(F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 359–370.Google Scholar
  5. Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A., 1972, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31:97–106.PubMedGoogle Scholar
  6. Colle, L. M., Holmes, L. J., and Pappius, H. M., 1986, Correlation between behavioral status and cerebral glucose utilization in rats following freezing lesion, Brain Res. 397:27–36.PubMedCrossRefGoogle Scholar
  7. Commissiong, J. W., 1985, Monoamine metabolites: Their relationship and lack of relationship to monoaminergic neuronal activity, Biochem. Pharmacol. 34:1127–1131.PubMedCrossRefGoogle Scholar
  8. Demopoulos, H. B., Milvy, R., Kakari, S., and Ransohoff, J., 1972, Molecular aspects of membrane structure in cerebral edema, in: Steroids and Brain Edema (H. J. Reulen and K. Schurmann, eds.), Springer-Verlag, Berlin, pp. 29–39.Google Scholar
  9. Descarries, L., Watkins, K. C., and Lapierre, Y., 1977, Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis, Brain Res. 133:197–222.PubMedCrossRefGoogle Scholar
  10. Fenske, A., Sinterhauf, K., and Reulen, H. J., 1976, The role of monoamines in the development of cold-induced edema, in: Dynamics of Brain Edema (H. M. Pappius and W. Fiendel, eds.), Springer-Verlag, Berlin, pp. 150–154.Google Scholar
  11. Ferron, A., Descarries, L., and Reader, T. A., 1982, Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletion, Brain Res. 231:93–108.PubMedCrossRefGoogle Scholar
  12. Grome, J. J., and Harper, A. M., 1985, Serotonin depression of local cerebral glucose utilisation after monoamine oxidase inhibition, J. Cereb. Blood Flow Metab. 5:473–475.PubMedCrossRefGoogle Scholar
  13. Katzman, R., and Pappius, H. M., 1973, Brain Electrolytes and Fluid Metabolism, Williams & Wilkins, Baltimore.Google Scholar
  14. Koe, B. K., and Weissman, A., 1966, p-Chlorophenylalanine: A specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154:499–516.PubMedGoogle Scholar
  15. Kuhn, D. M., Wolf, W. A., and Youdim, M. B. H., 1986, Serotonin neurochemistry revisited: A new look at some old axioms. Critiques, Neurochenu Int. 8:141–154.Google Scholar
  16. Levitt, P., and Moore, R. Y., 1978, Noradrenaline neuron innervation of the neocortex in the rat, Brain Res. 139:219–231.PubMedCrossRefGoogle Scholar
  17. Lidov, H. G. W., Grzanna, R., and Molliver, M. E., 1980, The serotonin innervation of the cerebral cortex in the rat—An immunohistochemical analysis, Neuroscience 5:207–227.PubMedCrossRefGoogle Scholar
  18. Lookingland, K. J., Shannon, N. J., Chapin, D. S., and Moore, K. E., 1986, Exogenous tryptophan increases synthesis, storage, and intraneuronal metabolism of 5-hydroxytryptamine in the rat hypothalamus, J. Neurochem. 47:205–212.PubMedCrossRefGoogle Scholar
  19. Mefford, I. N., 1981, Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: Measurement of catecholamines, serotonin and metabolites in rat brain, J. Neurosci. Methods 3:207–224.PubMedCrossRefGoogle Scholar
  20. Moore, R. Y., 1982, Catecholamine neuron system in brain, Ann. Neurol. 12:321–327.PubMedCrossRefGoogle Scholar
  21. Morrison, J. H., Molliver, M. E., Grzanna, R., and Coyle, J. T., 1981, The intracortical trajectory of the coeruleo- cortical projection in the rat: A tangentially organized cortical afferent, Neuroscience 6:139–158.PubMedCrossRefGoogle Scholar
  22. Nelson, T., Lucignani, G., Goochee, J., Crane, A. M., and Sokoloff, L., 1986, Invalidity of criticisms of the deoxyglucose method based on alleged glucose-6-phosphatase activity in brain, J. Neurochem. 46:905–919. PubMedCrossRefGoogle Scholar
  23. Pappius, H. M., 1980, Mapping of cerebral functional activity with radioactive deoxyglucose: Application of studies of traumatized brain, Adv. Neurol. 28:271–279.PubMedGoogle Scholar
  24. Pappius, H. M., 1981, Local cerebral glucose utilization in thermally traumatized rat brain, Ann. Neurol. 9:484–491.PubMedCrossRefGoogle Scholar
  25. Pappius, H. M., 1982, Dexamethasone and local cerebral glucose utilization in freeze-traumatized rat brain, Ann. Neurol. 12:157–162.PubMedCrossRefGoogle Scholar
  26. Pappius, H. M., and Dadoun, R., 1986, Biogenic amines in injured brain, Trans. Am. Soc. Neurochem. 17:298.Google Scholar
  27. Pappius, H. M., and Dadoun, R., 1987, The effects of injury on the indoleamines in cerebral cortex, J. Neurochem. 49:321–325.PubMedCrossRefGoogle Scholar
  28. Pappius, H. M., and McCann, W. P., 1969, Effects of steroids on cerebral edema in cats, Arch. Neurol. 20:207–216.PubMedGoogle Scholar
  29. Pappius, H. M., and Wolfe, L. S., 1983a, The effects of indomethacin and ibuprofen on cerebral metabolism and blood flow in traumatized brain, J. Cereb. Blood Flow Metab. 3:448–459.PubMedCrossRefGoogle Scholar
  30. Pappius, H. M., and Wolfe, L. S., 1983b, Functional disturbances in brain following injury: Search for underlying mechanisms, Neurochem. Res. 8:63–72.PubMedCrossRefGoogle Scholar
  31. Pappius, H. M., and Wolfe, L. S., 1983c, Involvement of serotonin and catecholamines in functional depression of traumatized brain, J. Cereb. Blood Flow Metab. 3(Suppl. 1):S226–S227.Google Scholar
  32. Pappius, H. M., and Wolfe, L. S., 1984, Effects of drugs on local cerebral glucose utilization in traumatized brain: Mechanisms of action of steroids revisited, in: Recent Progress in the Study and Therapy of Brain Edema (G. Go and A. Baethmann, eds.), Plenum Press, New York, pp. 11–26.Google Scholar
  33. Pujol, J. F., Keane, P., McRae, A., Lewis, B. D., and Renaud, B., 1978, Biochemical evidence for serotonergic control of the locus coeruleus, in: Interactions between Putative Neurotransmitters in the Brain (S. Garattini, J. F. Pujol, and R. Samanin, eds.), Raven Press, New York, pp. 401–410.Google Scholar
  34. Reader, T. A., Ferrou, A., Descarries, L., and Jasper, H. H., 1979, Modulatory role for biogenic amines in the cerebral cortex: Microiontophoretic studies, Brain Res. 160:217–229.PubMedCrossRefGoogle Scholar
  35. Reader, T. A., Briere, R., Groudin, L., and Ferrou, A., 1986, Effects of p-di-chlorophenyl-alanine on cortical monoamines and on the activity of noradrenergic neurons, Neurochem. Res. 11:1025–1035.PubMedCrossRefGoogle Scholar
  36. Sastry, B. S. R., and Phillis, J. W., 1977, Inhibition of cerebral cortical neurones by a 5-hydroxytryptaminergic pathway from median raphe nucleus, Can. J. Physiol. Pharmacol. 55:737–743.PubMedCrossRefGoogle Scholar
  37. Schanberg, S. M., Schildkraut, J. J., Breese, G. R., and Kopin, I. J., 1968, Metabolism of norepinephrine-H3 in rat brain: Identification of conjugated 3-methoxy-4-hydroxyphenylglycol as the major metabolite, Biochem. Pharmacol. 17:247–254.PubMedCrossRefGoogle Scholar
  38. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem. 29:13–26.PubMedCrossRefGoogle Scholar
  39. Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab. 1:7–36.PubMedCrossRefGoogle Scholar
  40. Sokoloff, L., Reivich, M., Kennedy, C, Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28:897–916.PubMedCrossRefGoogle Scholar
  41. Stockmeier, C. A., Martino, A. M., and Kellar, K. J., 1985, A strong influence of serotonin axons on ß-adrenergic receptors in rat brain, Science 230:323–325.PubMedCrossRefGoogle Scholar
  42. Sutton, L. N., Bruce, D. A., Welsh, F. A., and Jaggi, J. L., 1980, Metabolic and electrophysiologic consequences of vasogenic edema, Adv. Neurol. 28:241–254.PubMedGoogle Scholar
  43. Taylor, D. A., and Stone, T. W., 1981, Neurotransmodulatory control of cerebral cortical neuron activity, in: The Organization of the Cerebral Cortex(F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 347–357.Google Scholar
  44. Vecht, C. J., Van Woerkom, T. C. A. M., Teelken, A. W., and Minderhoud, J. M., 1975, Homovanillic acid and 5-hydroxyindoleacetic acid cerebrospinal fluid levels, Arch. Neurol. 32:792–797.PubMedGoogle Scholar
  45. Wolfe, L. S., 1982, Eicosanoids: Prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids, J. Neurochem. 38:1–14.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Hanna M. Pappius
    • 1
  1. 1.The Goad Unit of The Dormer Laboratory of Experimental Neurochemistry, Montreal Neurological InstituteMcGill UniversityMontrealCanada

Personalised recommendations