Advertisement

Ballistic Deposition on Surfaces

  • P. Ramanlal
  • L. M. Sander

Abstract

In recent years considerable interest has developed In the formation of random structures under non-equilibrium conditions. Much of our understanding of the geometry of these structures and its relationship to their formation mechanism has come from the study of simple models by means of both computer simulation and theoretical methods. One of the most fundamental of these models is the ballistic aggregation model in which particles are added to a growing structure via linear (ballistic) trajectories. Other simple models which have been studied intensively include the Eden1 model, diffusion limited aggregation2 (DLA) and diffusion limited cluster-cluster aggregation.3,4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Eden Proc. 4th Berkeley Symp. Math. Stat. Probab. 4, 223 (1961)Google Scholar
  2. 2a.
    T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1982)CrossRefGoogle Scholar
  3. 2b.
    T.A. Witten and L.M. Sander, Phys. Rev. B 27, 1119 (1983).CrossRefGoogle Scholar
  4. 3.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).CrossRefGoogle Scholar
  5. 4.
    M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).CrossRefGoogle Scholar
  6. 5.
    B.B. Mandelbrot, “The Fractal Geometry of Nature” (Freeman, San Francisco 1982).Google Scholar
  7. 6.
    P. Meakin, J. Colloid and Interface Sci. 105, 240 (1985).CrossRefGoogle Scholar
  8. 7.
    D. Bensimon, B. Shraiman and S. Liang, Phys. Lett. 102A, 238 (1984).Google Scholar
  9. 8.
    R.C. Ball and T.A. Witten, Phys. Rev. A 29, 2966 (1984).CrossRefGoogle Scholar
  10. 9.
    M. Plischke and Z. Racz, Phys. Rev. Lett. 53, 415 (1984).CrossRefGoogle Scholar
  11. 10.
    F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).CrossRefGoogle Scholar
  12. 11a.
    R. Jullien and R. Botet, Phys. Rev. Lett. 54, 2055 (1985)CrossRefGoogle Scholar
  13. 11b.
    R. Jullien and R. Botet, J. Phys. A 18, 2279 (1985).CrossRefGoogle Scholar
  14. 12.
    M. Kardar, G. Parisi and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).CrossRefGoogle Scholar
  15. 13.
    B. Mandelbrot in “Fractals in Physics”, L. Pietronero and E. Tossati, eds. (Elsevier, 1986).Google Scholar
  16. 14.
    S. Alexander, Proceedings of Gaithersburg Conference on Transport and Relaxation Processes in Random Materials. M. Schesinger and Y. Klafter, Editors, October 1985.Google Scholar
  17. 15.
    P. Meakin, P. Ramanlal, L.M. Sander and R.C. Ball, Phys. Rev. A., in press.Google Scholar
  18. 16.
    B. Sutherland, Phys. Lett. 26A, 532 (1968).Google Scholar
  19. 17.
    H.V. Beijeren, Phys. Rev. Lett. 38, 993 (1977).CrossRefGoogle Scholar
  20. 18.
    S.T. Chui and J.D. Weeks, Phys. Rev. B 14, 4978 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. Ramanlal
    • 1
  • L. M. Sander
    • 1
  1. 1.Department of PhysicsThe University of MichiganAnn ArborUSA

Personalised recommendations