Hypernetted Chain Analyses of Dense Plasmalike Materials

  • Hiroshi Iyetomi
  • Setsuo Ichimaru


Free energy formulas applicable to the electron-screened ion plasmas are derived in the hypernetted chain (HNC) approximation. The formulas, expressed in terms of the correlation functions, enable one to avoid the more cumbersome and less accurate calculations involving the thermodynamic integrations. The miscibility of iron atoms in the hydrogenic solar plasmas is treated as a specific example of application.

The density-functional formalism is applied to the analyses of the multiparticle correlations in ense plasmas, leading to an exact summation of all the bridge diagrams. With the aid of a nonlocal density-functional approximation to the direct correlation function, we derive new formulas for the bridge function, which are then used for an improvement of the HNC scheme. Consequences of various approximations are numerically examined.


Monte Carlo Solar Interior Thermodynamic Integration Direct Correlation Function Bridge Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baus and J.-P. Hansen, Phys. Rep. 59, 1 (1980).CrossRefGoogle Scholar
  2. 2.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).CrossRefGoogle Scholar
  3. 3.
    J.-P. Hansen, J. Phys. (Paris) Suppl. 41, C2–43 (1980).Google Scholar
  4. 4.
    D.J. Stevenson, J. Phys. (Paris) Suppl. 41, C2–53 (1980).Google Scholar
  5. 5.
    J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic, New York, 1976).Google Scholar
  6. 6.
    R. Evans, Adv. Phys. 28, 143 (1979).CrossRefGoogle Scholar
  7. 7.
    H. Iyetomi, Prog. Theor. Phys. 71, 427 (1984).CrossRefGoogle Scholar
  8. 8.
    T. Morita, Prog. Theor. Phys. 23, 829 (1960).CrossRefGoogle Scholar
  9. 9.
    B. Brami, J.-P. Hansen and P. Joly, Physica A 95, 505 (1979).CrossRefGoogle Scholar
  10. 10.
    B.J. Alder, E.L. Pollock and J.-P. Hansen, Proc, Natl. Acad. Sci. USA 77, 6272 (1980).CrossRefGoogle Scholar
  11. 11.
    H. Iyetomi and S. Ichimaru, Phys. Rev. A, 34, 433 (1986).CrossRefGoogle Scholar
  12. 12.
    B.J. Alder and E.L. Pollock, Nature 275, 41 (1978).CrossRefGoogle Scholar
  13. 13.
    H. Iyetomi and S. Ichimaru, Phys. Rev. A, to be published.Google Scholar
  14. 14.
    K.C. Ng, J. Chem. Phys. 61, 2680 (1974).CrossRefGoogle Scholar
  15. 15a.
    H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982);CrossRefGoogle Scholar
  16. 15b.
    H. Iyetomi and S. Ichimaru, Phys. Rev. A 27, 3241 (1983).CrossRefGoogle Scholar
  17. 16.
    P. Tarazona, Phys. Rev. A 31, 2672 (1985).CrossRefGoogle Scholar
  18. 17.
    W.A. Curtin and N.W. Ashcroft, Phys. Rev. A 32, 2909 (1985).CrossRefGoogle Scholar
  19. 18.
    W.L. Slattery, G.D. Doolen and H.E. DeWitt, Phys. Rev. A 26, 2255 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Hiroshi Iyetomi
    • 1
  • Setsuo Ichimaru
    • 1
  1. 1.Department of PhysicsUniversity of TokyoBunkyo, TokyoJapan

Personalised recommendations