The Ground State of Stringy Gravity

  • J. D. Gegenberg
Part of the NATO Science Series book series (NSSB, volume 160)

Abstract

If the heterotic string theory is the correct “theory of everything,” then the physics of our world at energies much lower than 1019 Gev should be governed, to a good approximation, by an appropriately modified version of N = 1 supergravity in ten dimensions coupled to a supersymmetrie 1 2 E8 x E8 gauge field.1,2 In fact, there is reason to believe that to lowest order in an appropriate string parameter, the low energy effective theory is the Chapline-Manton theory,3 modified so as to arrange for the cancellation of gauge, gravitational and mixed anomalies.1 This modified Chapline-Manton theory will be abbreviated here as MCM theory.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.B. Green, J. H. Schwarz, Phys. Lett. B149, 117 (1984); B151, 21 (1985).Google Scholar
  2. 2.
    D. Gross, J. Harvey, E. Martinec, R. Rohm, Nucl. Phys. B256, 253 (1985).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    F. Chapline, N. S. Manton, Phys. Lett. B120, 301 (1983).MathSciNetGoogle Scholar
  4. 4.
    P. Candelas, G. Horowitz, A. Strominger, E. Witten, Nuc. Phys. B256, 46 (1985).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    S.-T. Yau, Proc. Natl. Acad. Sei. 74, 1798 (1977).ADSMATHCrossRefGoogle Scholar
  6. 6.
    G. Fogelman, K. S. Viswanathan and B. Wong, “Superstring Compactification on S with Torsion”, Simon Fraser University Preprint, 1985. B. P. Dolan, A. B. Henriques and R. G. Moorhouse, Phys. Lett. B166, 392 (1986); R. I. Nepomechie, Y.-S. Wu, A. Zee, Phys. Lett. B158, 311 (1985).Google Scholar
  7. 7.
    R. E. Kallosh, Phys. Lett. B159, 111 (1985).MathSciNetADSGoogle Scholar
  8. 8.
    I Bars, “Compactification of Superstrings and Torsion”, USC Preprint 85/15, 1985.Google Scholar
  9. 9.
    M. J. Duff in An Introduction to Kaluza-Klein Theories, ed. H. C. Lee (World Scientific, Singapore, 1984). J. D. Gegenberg, G. Kunstatter, Class. Quant. Grav. 3, 379 (1986).Google Scholar
  10. 10.
    F. Müller-Hoissen, Phys. Lett. B163, 106 (1985).ADSGoogle Scholar
  11. 11.
    P. G. O. Freund and M. A. Rubin, Phys. Lett. B97, 233 (1980).MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. D. Gegenberg
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of New BrunswickFrederictonCanada

Personalised recommendations