On the Covariant Quantization of Anomalous Gauge Theories

  • C.-M. Viallet
Part of the NATO Science Series book series (NSSB, volume 160)


The standard model of gauge theory for weak and electromagnetic interactions describes fermions as having a definite chirality: left and right chiralities are so different that for example the left handed part of the electron and its right-handed part (each of which is a Weyl fermion) do not have the same quantum numbers (weak hypercharge for example) [1,2], and thus it is natural to try to quantize gauge theories with Weyl fermions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example, E.S. Abers & B.W. Lee, Phys. Reports 9C(1973).Google Scholar
  2. 2.
    T.D. Lee & C.N. Yang, Phys. Rev. 105(1957) 1671.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S. Adler, Lectures at Brandeis Summer School 1970, Deser, Grisaru & Pendleton eds, MIT Press.Google Scholar
  4. 4.
    C. Bouchiat, J. Iliopoulos & P. Meyer, Phys. Lett. 38B(1972) 519.ADSGoogle Scholar
  5. 5.
    D. Gross & R. Jackiw, Phys. Rev. D6(1972) 477.ADSGoogle Scholar
  6. 6.
    J. Wess & B. Zumino, Phys. Lett. 37B(1971) 95.MathSciNetADSGoogle Scholar
  7. 7.
    M.B. Green & J.H. Schwarz, Phys. Lett. 149(1984) 117.MathSciNetCrossRefGoogle Scholar
  8. 8.
    O. Babelon, F.A. Schaposnik & C.M. Viallet, “Quantization of Gauge Theories with Weyl Fermions”, preprint PAR LPTHE 86/31, to appear in Physics Letters.Google Scholar
  9. 9.
    K. Harada & T. Tsutsui, “On the Path-Integral Quantization of Anomalous Gauge Theories”, preprint TIT/HEP 94 (1986).Google Scholar
  10. 10.
    L.D. Faddeev & V.N. Popov, Phys. Lett. 25B(1967) 29.ADSGoogle Scholar
  11. 11.
    L.D. Faddeev, Phys. Lett. 145B(1984) 81.MathSciNetADSGoogle Scholar
  12. 12.
    L.D. Faddeev, S.L. Shatashvili, Phys. Lett. 167B(1986) 225.ADSGoogle Scholar
  13. 13.
    A.M. Polyakov, Phys. Lett. 103B(1981) 207.MathSciNetADSGoogle Scholar
  14. 14.
    O. Babelon, C.M. Viallet, Comm. Math. Phys. 81(1981) 515.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    O. Babelon, C.M. Viallet, Phys. Lett. 85B(1979) 246.MathSciNetADSGoogle Scholar
  16. 16.
    K. Fujikawa, Phys. Rev. Lett. 42(1979)1195. K. Fujikawa, Phys. Rev. D21(1980)2848. ADSCrossRefGoogle Scholar
  17. 17.
    C. Becchi, A. Rouet & R. Stora, Ann. Phys. (N.Y.) 98(1976)287. MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A.S. Schwarz, Comm. Math. Phys. 64(1979) 233.MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    C.M. Viallet, Lectures at the XXII Karpacz Winter School of Theoretical Physics (1986), to appear, World Scientific, A. Jaczyk ed.Google Scholar
  20. 20.
    L.D. Faddeev, Theor. Math. Phys. 1(1969) 3.MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Alvarez-Gaumé & P. Ginsparg, Nucl. Phys. B243(1984) 449.ADSCrossRefGoogle Scholar
  22. 22.
    A. Niemi & G. Semenoff, Phys. Rev. Lett. 56(1986) 1019.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    R. Jackiw & R. Rajaraman, Phys. Rev. Lett. 54(1985)1219; R. Rajaraman, Phys. Lett. 154B(1985)305; 162B(1985)148; L. Alvarez-Gaumé, S. Delia Pietra, V. Delia Pietra, Phys. Lett. 166B(1986)177; J.G. Halliday, E. Rabinovici, A. Schwimmer, M. Chanowitz, Nucl. Phys. B268(1986)413; M. Chanowitz, Phys. Lett. 171B(1986)280. ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C.-M. Viallet
    • 1
  1. 1.L.P.T.H.EUniversite Pierre et Marie CurieParis Cedex 05France

Personalised recommendations