Advertisement

Nuclear Magnetic Resonance Spectroscopy of Bile Acids

Chapter

Abstract

It is perhaps to the detriment of those investigators who are currently working in research areas involving bile acids that so much of the chemistry of this group of substances was worked out in the first half of this century (see Fieser and Fieser [1] for a summary of this body of knowledge). As a result, several of the analytical techniques that have been developed over the past 20 years have not been systematically applied to the study of bile acids.

Keywords

Bile Acid Bile Salt Nuclear Magnetic Resonance Spectrum Cholic Acid Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Fieser and M. Fieser, in “Steroids,” Reinhold, New York (1959).Google Scholar
  2. 2.
    D. H. Williams and I. Fleming, “Spectroscopic Methods in Organic Chemistry,” 3rd ed., McGraw-Hill, London, New York (1980).Google Scholar
  3. 3.
    W. Kemp, “Organic Spectroscopy,” Macmillan, London (1975).Google Scholar
  4. 4.
    D. M. Small, in “The Bile Acids. Chemistry, Metabolism and Physiology.” Vol. I. “Metabolism (D. Kritchevsky and P. P. Nair, eds.), Plenum Press, New York (1971).Google Scholar
  5. 5.
    J. St. Pyrek, R. Sterzycki, R. Lester, and A. Adcock, Lipids 17, 241 (1982).Google Scholar
  6. 6.
    J. E. Herz and J. Sandoval, Steroids 41, 327 (1983).PubMedGoogle Scholar
  7. 7.
    H. R. Nace and E. M. Holt, J. Org. Chem. 34, 2692 (1969).PubMedGoogle Scholar
  8. 8.
    T. Harano, K. Harano, and K. Yamasaki, Steroids 32, 73 (1978).PubMedGoogle Scholar
  9. 9.
    C. K. Lai, C. Y. Byon, M. Gut, D. Mostowicz, and W. G. Anderson, J. Labld. Cpds. Radiopharm. 21, 627 (1984).Google Scholar
  10. 10.
    R. W. Owen, A. N. Mason, and R. F. Bilton, J. Lipid Res. 24, 1500 (1983).PubMedGoogle Scholar
  11. 11.
    R. W. Owen and R. F. Bilton, J. Ster. Biochem. 19, 1355 (1983).Google Scholar
  12. 12.
    R. W. Owen, M. J. Hill, and R. F. Bilton, J. Lipid Res. 24, 1109 (1983).PubMedGoogle Scholar
  13. 13.
    D. M. Small, S. A. Penkett, and D. Chapman, Biochem. Biophys. Acta 176, 178 (1969).PubMedGoogle Scholar
  14. 14.
    J. F. Baker and R. T. Blickenstaff, J. Org. Chem. 40, 1579 (1975).PubMedGoogle Scholar
  15. 15.
    T. Iida and F. C. Chang, J. Org. Chem. 47, 2966 (1982).Google Scholar
  16. 16.
    Y. Shalon and W. H. Elliott, FEBS Lett. 44, 223 (1974).Google Scholar
  17. 17.
    P. Child, A. Kuksis, and L. Marai, Can. J. Biochem. 57, 216 (1979).PubMedGoogle Scholar
  18. 18.
    M. Une, B. I. Cohen, and E. H. Mosbach, J. Lipid Res. 25, 407 (1984).PubMedGoogle Scholar
  19. 19.
    T. Iida and F. C. Chang, J. Org. Chem. 48, 1194 (1983).Google Scholar
  20. 20.
    D. L. Hachey, P. A. Szczepanik, O. W. Berngruber, and P. D. Klein, J. Label. Cmpds. 9, 703 (1973).Google Scholar
  21. 21.
    M. R. Tenneson, J. D. Baty, R. F. Bilton, and A. N. Mason, J. Ster. Biochem. 11, 1227 (1979).Google Scholar
  22. 22.
    M. R. Tenneson, J. D. Baty, R. F. Bilton, and A. N. Mason, J. Ster. Biochem. 10, 311 (1979).Google Scholar
  23. 23.
    R. A. Leppik, Biochem. J. 210, 829 (1983).PubMedGoogle Scholar
  24. 24.
    P. J. Barnes, J. D. Baty, R. F. Bilton, and A. N. Mason, Tetrahedron 32, 89 (1976).Google Scholar
  25. 25.
    R. A. Leppik, Biochem. J. 202, 747 (1982).PubMedGoogle Scholar
  26. 26.
    Y. Shalon and W. H. Elliott, Steroids 28, 655 (1976).PubMedGoogle Scholar
  27. 27.
    S. Yamauchi, M. Kojima, and F. Nakayama, Steroids 41, 155 (1983).PubMedGoogle Scholar
  28. 28.
    R. W. Owen and R. F. Bilton, Biochem. J. 216, 641 (1983).PubMedGoogle Scholar
  29. 29.
    R. A. Leppik, Steroids 41, 475 (1983).PubMedGoogle Scholar
  30. 30.
    R. F. Bilton, A. N. Mason, and M. E. Tenneson, Tetrahedron 37, 2509 (1981).Google Scholar
  31. 31.
    J. E. Herz and R. Ocampo, Steroids 40, 661 (1982).PubMedGoogle Scholar
  32. 32.
    P. K. Bhattacharyya and Y. G. Bankawala, Anal. Chem. 50, 1462 (1978).Google Scholar
  33. 33.
    K-Y. Tserng and P. D. Klein, Steroids 29, 635 (1977).PubMedGoogle Scholar
  34. 34.
    R. Shaw and W. H. Elliott, J. Lipid Res. 19, 783 (1978).PubMedGoogle Scholar
  35. 35.
    C. K. Lai, C. Y. Byon, and M. Gut, J. Labld. Cpds. Radiopharm. 21, 615 (1984).Google Scholar
  36. 36.
    T. Iida and F. C. Chang, J. Org. Chem. 46, 2786 (1981).Google Scholar
  37. 37.
    T. Iida, H. R. Taneja, and F. C. Chang, Lipids 16, 863 (1981).PubMedGoogle Scholar
  38. 38.
    M. Une, F. Nagai, K. Kihira, T. Kuramoto, and T. Hoshita, J. Lipid Res. 24, 924 (1983).PubMedGoogle Scholar
  39. 39.
    T. Iida and F. C. Chang, J. Org. Chem. 47, 2972 (1982).Google Scholar
  40. 40.
    T. Dahl, Y-H. Kim, D. Levy, and R. Stevenson, J. Chem. Soc., 2723 (1969).Google Scholar
  41. 41.
    K. Kihira, A. K. Batta, E. H. Mosbach, and G. Salen, J. Lipid Res. 20, 421 (1979).PubMedGoogle Scholar
  42. 42.
    M. E. Tenneson, J. D. Baty, R. F. Bilton, and A. N. Mason, Biochem. J. 184, 613 (1979).PubMedGoogle Scholar
  43. 43.
    K. Kihira, A. Kubota, and T. Hoshita, J. Lipid Res. 25, 871 (1984).PubMedGoogle Scholar
  44. 44.
    R. Shaw and W. H. Elliott, Lipids 15, 805 (1980).Google Scholar
  45. 45.
    J. R. Dias and B. Nassum, Steroids 35, 405 (1980).PubMedGoogle Scholar
  46. 46.
    G. A. D. Haslewood and L. Tokes, Biochem. J. 126, 1161 (1972).PubMedGoogle Scholar
  47. 47.
    K. Carlstrom, D. N. Kirk, and J. Sjovall, J. Lipid Res. 22, 1225 (1981).PubMedGoogle Scholar
  48. 48.
    G. Halperin, Steroids 34, 295 (1979).Google Scholar
  49. 49.
    S. Barnes and J. M. Geckle, J. Lipid Res. 23, 161 (1982).PubMedGoogle Scholar
  50. 50.
    W. Kramer and G. Kurz, J. Lipid Res. 24, 910 (1983).PubMedGoogle Scholar
  51. 51.
    P. Back, H. Fritz, and C. Populoh, Hoppe-Seyler’s Z. Physiol. Chem. 365, 479 (1984).PubMedGoogle Scholar
  52. 52.
    G. Janssen, S. Toppet, and G. Parmentier, J. Lipid Res. 23, 456 (1982).PubMedGoogle Scholar
  53. 53.
    F. C. Chang, J. Org. Chem. 44, 4567 (1979).Google Scholar
  54. 54.
    K. Kihira, Y. Morioka, and T. Hoshita, J. Lipid Res. 22, 1181 (1981).PubMedGoogle Scholar
  55. 55.
    K. Kihira, Y. Akashi, S Kuroki, J. Yanagisawa, F. Nakayama, and T. Hoshita, J. Lipid Res. 25, 1330 (1984).PubMedGoogle Scholar
  56. 56.
    G. A. D. Haslewood, S. Ikawa, L. Tokes, and D. Wong, Biochem. J. 171, 409 (1978).PubMedGoogle Scholar
  57. 57.
    R. F. Zurcher, in “Progress in Nuclear Magnetic Resonance Spectroscopy” (J. W. Ensley and L. H. Sutcliffe, eds.), Vol. 2, p. 205, Pergamon Press, New York (1967).Google Scholar
  58. 58.
    J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir E. R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richardo, and P. D. Woodgate, J. Chem. Soc. (C), 250 (1970).Google Scholar
  59. 59.
    R. F. Zurcher, Helv. Chim. Acta 44, 1755 (1961).Google Scholar
  60. 60.
    R. F. Zurcher, Helv. Chim. Acta 46, 2054 (1963).Google Scholar
  61. 61.
    N. S. Bhacca and D. H. Williams, in “Applications of NMR Spectroscopy in Organic Chemistry, Illustrations from the Steroid Field,” Holden Day, San Francisco (1964).Google Scholar
  62. 62.
    S. Ricca, B. Rindone, and C. Scolastico, Gazzetta 99, 1284 (1969).Google Scholar
  63. 63.
    P. V. Demarco and L. A. Spangle, J. Org. Chem. 34, 3205 (1969).Google Scholar
  64. 64.
    R. G. Wilson, D. E. A. Rivette, and D. H. Williams, Chem. Ind. (London), 109 (1969).Google Scholar
  65. 65.
    M. Karplus, J. Chem. Phys. 30, 11 (1959).Google Scholar
  66. 66.
    D. Liebfritz and J. D. Roberts, J. Am. Chem. Soc. 95, 4996 (1973).Google Scholar
  67. 67.
    T. Iida, T. Tamura, T. Matsumoto, and F. C. Chang, Org. Magn. Reson. 21, 305 (1983).Google Scholar
  68. 68.
    T. Iida, T. Tamura, T. Matsumoto, and F. C. Chang, J. Jpn. Oil Chem. 32, 46 (1983).Google Scholar
  69. 69.
    A. Baillet-Guffroy, D. Baylocq, A. Rabaron, and F. Pellerin, J. Pharm. Sci. 73, 847 (1984).PubMedGoogle Scholar
  70. 70.
    H. Eggert, C. L. VanAntwerp, N. S. Bhacca, and C. Djerassi, J. Org. Chem. 41, 71 (1976).PubMedGoogle Scholar
  71. 71.
    J. W. Blunt and J. B. Stothers, Org. Magn. Reson. 9, 439 (1977).Google Scholar
  72. 72.
    W. A. Gibbons, C. F. Beyer, J. Dadok, F. R. Sprecher, and H. R. Wyssbrod, Biochemistry 14, 420 (1974).Google Scholar
  73. 73.
    J. H. Noggle and R. E. Schirmer, “The Nuclear Overhauser Effect,” Academic Press, New York (1971).Google Scholar
  74. 74.
    V. M. Coiro, E. Giglio, S. Morosetti, and A. Palleschi, Acta Crystallogr. B36, 1478 (1980).Google Scholar
  75. 75.
    R. E. Cobbledick and F. W. B. Einstein, Acta Crystallogr. B36, 287 (1980).Google Scholar
  76. 76.
    A. Hogan, S. E. Ealick, C. E. Bugg, and S. Barnes, J. Lipid Res. 25, 791 (1984).PubMedGoogle Scholar
  77. 77.
    D. V. Waterhous, S. Barnes, and D. D. Muccio, J. Lipid Res. 26 1068 (1985).PubMedGoogle Scholar
  78. 78.
    L. D. Colebrook and L. D. Hall, Org. Magn. Reson. 21, 532 (1983).Google Scholar
  79. 79.
    C. C. Hinckley, J. Am. Chem. Soc. 91, 5160 (1969).PubMedGoogle Scholar
  80. 80.
    J. Reuben, Prog. Nucl. Magn. Res. Spectr. 9, 1 (1973).Google Scholar
  81. 81.
    J. Reuben and G. A. Elgavish, in “Handbook on the Physics and Chemistry of Rare Earths” (K. A. Gschneider, Jr., and L. Eyring, eds.), Vol. 4, p. 483, North-Holland, Amsterdam (1979).Google Scholar
  82. 82.
    L. Lee and B. D. Sykes, Biochemistry 22, 4336 (1983).Google Scholar
  83. 83.
    E. Mukidjam, G. A. Elgavish, and S. Barnes, Biochemistry 26, 6785 (1987).PubMedGoogle Scholar
  84. 84.
    W. D. E. Horrocks Jr., and D. R. Sudnick, J. Am. Chem. Soc. 101, 334 (1979).Google Scholar
  85. 85.
    G. A. Elgavish and J. Reuben, J. Magn. Reson. 42, 242 (1981).Google Scholar
  86. 86.
    F. Inagaki and T. Miyazawa, Prog. Nucl. Magn. Reson. Spectr. 14, 67 (1981).Google Scholar
  87. 87.
    S. L. Patt and J. N. Schoolery, J. Magn. Reson. 46, 535 (1982).Google Scholar
  88. 88.
    G. A. Morris and R. Freeman, J. Am Chem. Soc. 101, 760 (1979).Google Scholar
  89. 89.
    D. M. Dodrell, D. T. Pregg, and M. R. Bendall, J. Magn. Reson. 48, 323 (1982).Google Scholar
  90. 90.
    A. A. Maudsley, L. Muller, and R. R. Ernst, J. Magn. Reson. 28, 463 (1977).Google Scholar
  91. 91.
    A. Bax, in “Two Dimensional Nuclear Magnetic Resonance in Liquids,” Delft University Press, Delft, Holland (1982).Google Scholar
  92. 92.
    M. H. Levitt and R. Freeman, J. Magn. Reson. 34, 675 (1979).Google Scholar
  93. 93.
    A. Bax and R. Freeman, J. Magn. Reson. 44, 542 (1981).Google Scholar
  94. 94.
    R. Freeman, J. A. Frenkiel, and M. B. Rubin, J. Am. Chem. Soc. 104, 5545 (1982).Google Scholar
  95. 95.
    G. Lukacs and A. Neszmelyi, J. Chem. Soc. Chem. Commun. 1275 (1981).Google Scholar
  96. 96.
    A. Bax, R. Freeman, and J. A. Frenkiel, J. Am. Chem. Soc. 103, 2102 (1981).Google Scholar
  97. 97.
    G. Wider, R. Baumann, K. Nagayama, R. R. Ernst, and K. Wuthrich, J. Magn. Reson. 42, 73 (1981).Google Scholar
  98. 98.
    G. Bodenhauser and R. R. Ernst, J. Am. Chem. Soc. 104, 1304 (1982).Google Scholar
  99. 99.
    R. Paul, M. K. Mathew, R. Narayanan, and P. Balaram, Chem. Phys. Lipids 25, 345 (1979).Google Scholar
  100. 100.
    L. Martis, N. A. Hall, and A. L. Thakkar, J. Pharm. Sci. 61, 1757 (1972).PubMedGoogle Scholar
  101. 101.
    G. Conte, R. Di Blasi, E. Giglio, A. Paretta, and N. V. Pavel, J. Phys. Chem. 88, 5720 (1984).Google Scholar
  102. 102.
    A. R. Campanelli, S. Candeloro De Sanctis, E. Giglio, and S. Petriconi, Acta Crystallogr. C40, 631 (1984).Google Scholar
  103. 103.
    B. M. Fung and M. C. Peden, Biochem. Biophys. Acta 437, 237 (1976).Google Scholar
  104. 104.
    W. B. Smith and G. D. Barnard, Can. J. Chem. 59, 1602 (1981).Google Scholar
  105. 105.
    B. Lindman, N. Kamenka, H. Fabre, J. Ulmius, and T. Wieloch, J. Colloid. Interface Sci. 73, 556 (1980).Google Scholar
  106. 106.
    W. B. Smith, J. Phys. Chem. 82, 234 (1978).Google Scholar
  107. 107.
    J. Robeson, B. W. Foster, S. N. Rosenthal, E. T. Adams Jr., and E. J. Fendler, J. Phys. Chem. 85, 1254 (1981).Google Scholar
  108. 108.
    B. M. Fung and L. Thomas Jr., Chem. Phys. Lipids 25, 141 (1979).Google Scholar
  109. 109.
    F. M. Menger, J-U. Rhee, and L. Mandell, J. Chem. Soc. Commun. 918 (1973).Google Scholar
  110. 110.
    J. C. Montet, C. Merienne, and G. Bram, Tetrahedron 38, 1159 (1982).Google Scholar
  111. 111.
    J. Ulmius, G. Lindblom, H. Wennerstrom, L. B-A. Johansson, K. Fontell, O. Sodermann, and G. Arvidson, Biochemistry 21, 1553 (1982).PubMedGoogle Scholar
  112. 112.
    R. E. Stark, J. L. Manstein, W. Curatolo, and B. Sears, Biochemistry 22, 2486 (1983).PubMedGoogle Scholar
  113. 113.
    H. Saito, Y. Sugimoto, R. Tabeta, S. Suzuki, G. Izumi, M. Kodama, S. Toyoshima, and C. Nagata, J. Biochem. 94, 1877 (1983).PubMedGoogle Scholar
  114. 114.
    R. E. Stark and M. F. Roberts, Biochim. Biophys. Acta 770, 115 (1984).Google Scholar
  115. 115.
    G. R. A. Hunt and H. Jawaharlal, Biochim. Biophys. Acta 601, 678 (1980).PubMedGoogle Scholar
  116. 116.
    F. J. Castellino and B. N. Violand, Arch. Biochem. Biophys. 193, 543 (1979).PubMedGoogle Scholar
  117. 117.
    G. C. Brouillette, J. P. Segrest, T. C. Ng, and J. L. Jones, Biochemistry 21, 4579 (1982).Google Scholar
  118. 118.
    D. M. Wilson, A. L. Burlinghame, T. Cronholm, and J. Sjövall, Biochem. Biophys. Res. Commun. 56, 828 (1974).PubMedGoogle Scholar
  119. 119.
    T. Cronholm, J. Sjövall, D. M. Wilson, and A. L. Burlinghame, Biochim. Biophys. Acta 575, 193 (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  1. 1.Departments of Pharmacology and Biochemistry and Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of ChemistryQueen Mary College, University of LondonLondonEngland

Personalised recommendations