Skip to main content

Differentiation of Constructive Functions of a Real Variable and Relative Computability

  • Chapter
Mathematical Logic and Its Applications

Abstract

The paper belongs to constructive mathematics of Markov school. The aim of it is to show an introducing of sane relativized notions into constructive mathematical analysis (CMA) and to present a few results concerning differentiability of constructive real-valued functions of a real variable as an example of the utilization of the relativization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Beeson, “Foundations of Constructive Mathematics,” Springer-Verlag, Berlin (1985).

    MATH  Google Scholar 

  2. M. Beeson, Some problems in constructive mathematics, Rend.Sem.Mat. Univers. Politecn.Ttorino 38:13 (1980).

    MathSciNet  MATH  Google Scholar 

  3. N. A. Sanin, Constructive real numbers and constructive function spaces, in: “Translations of Mathematical Monographs 21,” Amer.Math.Soc., Providence, R.I. (1968).

    Google Scholar 

  4. B. A. Kušněr, “Lectures on Constructive Mathematical Analysis,” Amer. Math.Soc., Providence, R.I. (1984).

    Google Scholar 

  5. O. Demuth and A. Kučera, Remarks on constructive mathematical analysis, in: “Logic Colloquium ′78,” M. Boffa, D. van Dalen, K. McAloon, eds., North-Holland, Amsterdam (1979).

    Google Scholar 

  6. N. A. Šanin, On the constructive interpretation of mathematical judgements, in: “Amer.Math. Soc. Transl. (2) 23,” Auer.Math. Soc., Providence, R.I. (1963).

    Google Scholar 

  7. H. Rogers, “Theory of Recursive Functions and Effective Computability,” McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  8. O. Demuth, R. Kryl, A. Kučera, An application of the theory of functions partial recursive relative to number sets in constructive mathematics (Russian), Acta Univ. Carolinae-Math. et Phys. 19:15 (1978).

    MATH  Google Scholar 

  9. O. Demuth, Some questions in the theory of constructive functions of a real variable (Russian), Acta Univ. Carolinae-Math. et Phys. 19:61 (1978).

    MathSciNet  MATH  Google Scholar 

  10. I. D. Zaslavskij, G. S. Cejtin. On singular coverings and properties of constructive functions connected with them, in: “Amer. Math Soc. Transl. (2) 98,” Amer.Math. Soc., Providence, R.I. (1971).

    Google Scholar 

  11. O. Demuth, On some classes of arithmetical real numbers (Russian), Comment.Math.Univ.Carolinae 23:453 (1982).

    MATH  Google Scholar 

  12. P. Martin-Lof, “Notes on Constructive Mathematics,” Almquist and Wiksell, Stockholm (1970).

    Google Scholar 

  13. O. Demuth, An example of a construction of pseudonumbers by means of recursion theory (to appear).

    Google Scholar 

  14. O. Demuth, On arithmetical complexity of differentiation in constructive mathematics (Russian), Comment.Math.Univ.Carolinae 24:301 (1983).

    MathSciNet  MATH  Google Scholar 

  15. G. S. Cejtin, Algorithmic operators in constructive metric spaces, in: “Amer.Math. Soc. Transl. (2) 64,” Amer.Math. Soc., Providence, R.I. (1967).

    Google Scholar 

  16. A. Kučera, B. A. Kušněr, On the types of recursive isomorphism of some concepts of constructive analysis (Russian), Comment.Math.Univ.Carolinae 19:97 (1978).

    MathSciNet  MATH  Google Scholar 

  17. I. D. Zaslavskij, Some properties of constructive real numbers and constructive functions, in: “Amer.Math. Soc. Transl. (2) 57,” Amer.Math. Soc., Providence, R.I. (1966).

    Google Scholar 

  18. O. Demuth, Constructive functions of a real variable and reducibilities of sets (to appear).

    Google Scholar 

  19. O. Demuth, Derivatives of constructive functions (to appear).

    Google Scholar 

  20. O. Demuth, A constructive analogue of Garg’s theoron on Dini derivatives (Russian),. Comment.Math.Univ.Carolinae 21:457 (1980).

    MathSciNet  MATH  Google Scholar 

  21. J. Myhill, A recursive function defined on a compact interval and having a continuous derivative that is not recursive, Michigan Math.J. 18:97, (1971).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Demuth, O., Filipec, P. (1987). Differentiation of Constructive Functions of a Real Variable and Relative Computability. In: Skordev, D.G. (eds) Mathematical Logic and Its Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0897-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0897-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8234-1

  • Online ISBN: 978-1-4613-0897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics