Abstract
The paper belongs to constructive mathematics of Markov school. The aim of it is to show an introducing of sane relativized notions into constructive mathematical analysis (CMA) and to present a few results concerning differentiability of constructive real-valued functions of a real variable as an example of the utilization of the relativization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Beeson, “Foundations of Constructive Mathematics,” Springer-Verlag, Berlin (1985).
M. Beeson, Some problems in constructive mathematics, Rend.Sem.Mat. Univers. Politecn.Ttorino 38:13 (1980).
N. A. Sanin, Constructive real numbers and constructive function spaces, in: “Translations of Mathematical Monographs 21,” Amer.Math.Soc., Providence, R.I. (1968).
B. A. Kušněr, “Lectures on Constructive Mathematical Analysis,” Amer. Math.Soc., Providence, R.I. (1984).
O. Demuth and A. Kučera, Remarks on constructive mathematical analysis, in: “Logic Colloquium ′78,” M. Boffa, D. van Dalen, K. McAloon, eds., North-Holland, Amsterdam (1979).
N. A. Šanin, On the constructive interpretation of mathematical judgements, in: “Amer.Math. Soc. Transl. (2) 23,” Auer.Math. Soc., Providence, R.I. (1963).
H. Rogers, “Theory of Recursive Functions and Effective Computability,” McGraw-Hill, New York (1967).
O. Demuth, R. Kryl, A. Kučera, An application of the theory of functions partial recursive relative to number sets in constructive mathematics (Russian), Acta Univ. Carolinae-Math. et Phys. 19:15 (1978).
O. Demuth, Some questions in the theory of constructive functions of a real variable (Russian), Acta Univ. Carolinae-Math. et Phys. 19:61 (1978).
I. D. Zaslavskij, G. S. Cejtin. On singular coverings and properties of constructive functions connected with them, in: “Amer. Math Soc. Transl. (2) 98,” Amer.Math. Soc., Providence, R.I. (1971).
O. Demuth, On some classes of arithmetical real numbers (Russian), Comment.Math.Univ.Carolinae 23:453 (1982).
P. Martin-Lof, “Notes on Constructive Mathematics,” Almquist and Wiksell, Stockholm (1970).
O. Demuth, An example of a construction of pseudonumbers by means of recursion theory (to appear).
O. Demuth, On arithmetical complexity of differentiation in constructive mathematics (Russian), Comment.Math.Univ.Carolinae 24:301 (1983).
G. S. Cejtin, Algorithmic operators in constructive metric spaces, in: “Amer.Math. Soc. Transl. (2) 64,” Amer.Math. Soc., Providence, R.I. (1967).
A. Kučera, B. A. Kušněr, On the types of recursive isomorphism of some concepts of constructive analysis (Russian), Comment.Math.Univ.Carolinae 19:97 (1978).
I. D. Zaslavskij, Some properties of constructive real numbers and constructive functions, in: “Amer.Math. Soc. Transl. (2) 57,” Amer.Math. Soc., Providence, R.I. (1966).
O. Demuth, Constructive functions of a real variable and reducibilities of sets (to appear).
O. Demuth, Derivatives of constructive functions (to appear).
O. Demuth, A constructive analogue of Garg’s theoron on Dini derivatives (Russian),. Comment.Math.Univ.Carolinae 21:457 (1980).
J. Myhill, A recursive function defined on a compact interval and having a continuous derivative that is not recursive, Michigan Math.J. 18:97, (1971).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1987 Plenum Press, New York
About this chapter
Cite this chapter
Demuth, O., Filipec, P. (1987). Differentiation of Constructive Functions of a Real Variable and Relative Computability. In: Skordev, D.G. (eds) Mathematical Logic and Its Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0897-3_6
Download citation
DOI: https://doi.org/10.1007/978-1-4613-0897-3_6
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4612-8234-1
Online ISBN: 978-1-4613-0897-3
eBook Packages: Springer Book Archive