Skip to main content
  • 450 Accesses

Abstract

Great intellectual discoveries, like fine gems held up before the eyes, continue to fascinate and to reveal new facets as they are beheld in the eye of the mind. As an example of this phenomenon, we may consider the Gődel incompleteness theorems, which, during the 55 years since their discovery, have repeatedly yielded new insights in the course of ongoing reinterpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arbib, Michael A. 1966 “Speed-up theorems and incompleteness theorems”, in E.R. Caianiello (ed.), Automata Theory, Academic Press, pp.6–24.

    Google Scholar 

  • Artemov, S.N. 1985 “Nearifmeticnostj istiinostnych predikatnych logic dokazuemosti”, Soviet Math. Doklady 284:2, pp. 270–271.

    MathSciNet  Google Scholar 

  • Boolos, George 1979 The Unprovability of Consistency, Cambridge U. Press.

    MATH  Google Scholar 

  • Boolos, George 1984. “The logic of provability”, American Mathematical Monthly 91, pp. 470–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Boolos, George 198? “The sentences of predicate provability logic true under every interpretation” (preprint), to appear.

    Google Scholar 

  • Chaitin, Gregory J. 1974 “Information-theoretic limitations of formal systems”, Journal of the Association for Computing Machinery 21, pp. 403–424.

    MathSciNet  MATH  Google Scholar 

  • Chaitin, Gregory J.1977 “Algorithmic information theory”, IBM Journal of Research and Development 21, pp.350–359,

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, Martin 1982 “Why Gődel didn’t have Church’s thesis”, Information and Control 54, pp.3–24.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, Martin, Yu. Matijasevič and J. Robinson 1976 “Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solution”, in F.E. Browder (ed.), Mathematical Developments Arising from Hilbert Problems, pp.323–378.

    Google Scholar 

  • Dawson, Jr., John W. 1984 “Discussion on the foundation of mathematics”, History and Philosophy of Logic 5, pp.111–129.

    Article  MathSciNet  Google Scholar 

  • Dawson, Jr., John W. 1986 “The reception of Gődel’s incompleteness theorems”, to appear in PSA 1984, vol.2 (Proceedings of the 9th Biennial Meeting of the Philosophy of Science Association).

    Google Scholar 

  • Farmer, William 1984 “Length of proofs and unification theory”, Ph.D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Gardner, Martin 1979 “Mathematical Games”, Scientific American, November 1979, pp.20–34.

    Google Scholar 

  • Gődel, Kurt 1931 “Űber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I”, Monatshefte fűr Mathematik und Physik 38, pp. 173–198. Reprinted and translated in Gődel 1986, pp. 144–195.

    Article  Google Scholar 

  • Gődel, Kurt 1933 “Eine Interpretation des intuitionistisehen Aussagenkalkuls”, Ergebnisse eines mathematischen Kolloquiums 4, pp.39–40. Reprinted and translated in Gődel 1986, pp. 300–303.

    Google Scholar 

  • Gődel, Kurt 1936 “Űber die Länge von Beweisen”, Ergebnisse eines Mathematischen Kolloquiums 7, PP. 23–24. Reprinted and translated in Gődel 1986, pp.396–399.

    Google Scholar 

  • Gődel, Kurt 1986 Collected Works, vol. I, Oxford U. Press.

    Google Scholar 

  • Ketonen, Jussi and Robert M. Solovay 1981 “Rapidly growing Ramsey functions”, Annals of Mathematics 113, pp.267–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirby, L. and J. Paris 1982 “Accessible independence results for Peano arithmetic”, Bulletin of the London Mathematical Society 14, pp.285–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A.N. 1968 “Logical basis for information theory and probability theory”, IEEE Transactions in Information Theory IT-14, pp.662–664.

    Article  MathSciNet  Google Scholar 

  • Kreisel, Georg 1952 “On the interpretation of non-finitistic proofs, II”, Journal of Symbolic Logic 17, pp.43–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Lőb, M.H. 1955 “Solution of a problem of Leon Henkin”, Journal of Symbolic Logic 20, pp. 115–118.

    Article  MathSciNet  Google Scholar 

  • Lucas, John R. 1964 “Minds, machines, and Gődel”, in Alan Ross Anderson (ed.), Minds and Machines, Prentice-Hall, pp. 43–59.

    Google Scholar 

  • Parikh, Rohit 1973 “Some results on the length of proofs”, Transactions of the American Mathematical Society 177, pp.29–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Paris, Jeff, and Leo Harrington 1977 “A mathematical incompleteness in Peano arithmetic”, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland Pub. Co., pp. 1133–1142.

    Chapter  Google Scholar 

  • Quinsey, Joseph 1980 “Some problems in logic”, Ph.D. dissertation, St. Catherine’s College, Oxford University.

    Google Scholar 

  • Simpson, Stephen G. 1986 “Unprovable theorems and fast-growing functions”, to appear in S.G. Simpson (ed.), Logic and Combinatorics, American Mathematical Society.

    Google Scholar 

  • Smoryński, Craig 1977 “The incompleteness theorems”, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland Pub. Co., pp.821–865.

    Google Scholar 

  • Smoryński, Craig 1980 “Some rapidly-growing functions”, The Mathematical Intelligencer 2, pp.149–154.

    Article  MATH  Google Scholar 

  • Solovay, Robert M. 1976 “Provability interpretations of modal logic”, Israel Journal of Mathematics 25, pp.287–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer, Joel 1983 “Large numbers and unprovable theorems”, American Mathematical Monthly 90, pp.669–675.

    Article  MathSciNet  MATH  Google Scholar 

  • Vardanyan, V.A. 1985 “O predikatnoj logike dokazuemosti”, (preprint) Naucnyj sovet po kompleksnoj probleme “Kibernetika” AN SSSR, Moscow.

    Google Scholar 

  • Wang, Hao 1974 From Mathematics to Philosophy, Routledge and Kegan Paul, pp. 298–328.

    MATH  Google Scholar 

  • Webb, Judson 1980 Mechanism, Mentalism, and Metamathematics, D. Reidel Publishing Co.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Dawson, J.W. (1987). Facets of Incompleteness. In: Skordev, D.G. (eds) Mathematical Logic and Its Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0897-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0897-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8234-1

  • Online ISBN: 978-1-4613-0897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics