Ultrarelativistic Heavy-Ion Collisions and the Properties of Nuclear Matter Under Extreme Conditions

  • Gordon Baym


The two main issues I will discuss in these lectures are the nature of extended nuclear matter at extremely high energy densities, and how, by means of ultrarelativistic heavy-ion collisions in the laboratory, one can create matter at high densities, and thus have the opportunity to learn about its properties experimentally. To set the scale of nuclear energy densities let us note that the total energy in a nucleus in its ground state is essentially the rest mass density of the nucleons. Since nuclear matter has a density ρnmof order 0.16 nucleons/fm 3 and the nuclear mass is of order 940 MeV, the rest mass density is of order 0.15 Gev/fm 3. This energy density is large compared with the scale of low-energy spectroscopy, involving energy densities of order Mev/fm3. The question we are interested in is how we expect nuclear matter to act when we raise its energy density to the range of 1 — 10 Gev/fm 3 say. What, for example, are its principal degrees of freedom, its thermodynamic properties, and its quantum chromodynamic properties?


Neutron Star Nuclear Matter Chiral Symmetry Wilson Line Quark Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. Ludlam and H. E. Wegner, eds., “Quark Matter ’83, Proc. 3rd Int. Conf. on Ultra-relativistic Nucleus-Nucleus Collisions,” Nucl. Phys. A418 (1984).Google Scholar
  2. 2.
    K. Kajantie, ed., Quark Matter ’84, “Proc. 4th Int. Conf. on Ultra-relativistic Nucleus-Nucleus Collisions, ” Lect. Notes in Phys. ” 221, Springer, Berlin (1985).Google Scholar
  3. 3.
    L. S. Schroeder and M. Gyulassy, eds., “Quark Matter ’86, Proc. 5th Int. Conf. on Ultra-relativistic Nucleus-Nucleus Collisions,” Nucl. Phys. A461 (1987).Google Scholar
  4. 4.
    G. Baym and L. McLerran, “Ultrarelativistic heavy ion collisions,” W. A. Benjamin, Menlo Park (to be published).Google Scholar
  5. 5.
    B. Svetitsky, Nucl. Phys. A461: 71c (1987).ADSGoogle Scholar
  6. 6.
    J. Polonyi, Nucl. Phys. A461: 279c (1987).ADSGoogle Scholar
  7. 7.
    H. Satz, Ann. Rev. Nucl. Part. Sci. 35:245 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. 101B:89 (1981).ADSGoogle Scholar
  9. 9.
    T. Çelik, J. Engels and H. Satz, Phys. Lett. 129B:323 (1983).ADSGoogle Scholar
  10. 10.
    J. Kogut and D. Sinclair, preprint ILL-(TH)-86-46, Nucl. Phys. B (1987).Google Scholar
  11. 11.
    J. Kogut, Phys. Rev. Lett. 56:2557 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    J. Kogut, H. W. Wyld, F. Karsch and D. K. Sinclair, preprint ILL-(TH)-87-6.Google Scholar
  13. 13.
    G. E. Brown, H. A. Bethe and G. Baym, Nucl. Phys. A375:481 (1982).ADSGoogle Scholar
  14. 14.
    N. Iwamoto, Phys. Rev. Lett. 44:1637 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    G. Baym, Nucl. Phys. A447:463c (1986).ADSGoogle Scholar
  16. 16.
    J. H. Applegate and C. J. Hogan, Phys. Rev. D31:3037 (1985).ADSGoogle Scholar
  17. 17.
    H. Von Gersdorff, L. McLerran, M. Kataja and P. V. Ruuskanen, Phys. Rev. D34-.794 (1986).ADSGoogle Scholar
  18. 18.
    T. Matsui, B. Svetitsky and L. McLerran, Phys. Rev. D34:783, 2047 (1986).ADSGoogle Scholar
  19. 19.
    K. Kajantie, M. Kataja and P. V. Ruuskanen, Phys. Lett. B179:153 (1986).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gordon Baym
    • 1
  1. 1.Loomis Laboratory of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations